0基础教学_在BSC主链上部署智能合约并验证合约_BSC发币_币安发币

本篇教程适合0基础用户玩转BSC链上部署智能合约


前言

随着元宇宙概念和NFT的爆火,币安智能链也成了炙手可热的DAPP开发者平台.今天,就教大家如何在币安智能链(BSC链)上发行自己的代币(BEP20合约).


一、什么是币安智能链(BSC)?

币安智能链(BSC)可以被描述为与币安链并行的区块链。与币安链不同的地方在于,BSC拥有智能合约功能并与以太坊虚拟机(EVM)兼容。这里的设计目标是保持完整币安链的高吞吐量,同时将智能合约引入其生态系统。

本质上两个区块链都是并行的。值得注意的是BSC并非所谓的第二层或链外扩展性解决方案。它是一个即使币安链下线后也可以运行的独立区块链。从设计的角度来看,这两个链非常相似。

由于BSC与EVM兼容,因此它支持以太坊工具和DApp。理论上讲这使开发人员可以轻松地从以太坊移植其项目。对于用户而言,这表示他们可以轻松配置诸如MetaMask之类的应用程序与BSC一起使用,只需调整几个设置即可。

二、相关信息

官网:https://www.binance.org/cn

区块链浏览器:https://bscscan.com/

开发文档:https://docs.binance.org/index.html

三、部署智能合约

需要合约定制开发的请联系Q:贰肆壹零叁伍壹柒叁(注明来意)

1.安装MetaMask钱包插件

下载地址:https://metamask.io/

2.MetaMask自定义网络

MetaMask自定义网络

正式网参数:
链 ID(chainid): 56
RPC URL: https://bsc-dataseed.binance.org/
Currency Symbol:BNB
区块浏览器(Scan): https://bscscan.com
正式网参数

测试网参数:
链 ID(chainid): 97
RPC URL: https://data-seed-prebsc-1-s1.binance.org:8545/
Currency Symbol:BNB
区块浏览器(Scan): https://testnet.bscscan.com
测试网参数

3.Remix部署合约

Remix是在线的合约开发和部署工具。
首先打开Remix页面:http://remix.ethereum.org/
右侧选择SOLIDITY,左侧新建文件:Token.sol
使用Remix在线编辑器

Token.sol完整代码如下:

pragma solidity 0.5.16;

interface IBEP20 {
  /**
   * @dev Returns the amount of tokens in existence.
   */
  function totalSupply() external view returns (uint256);

  /**
   * @dev Returns the token decimals.
   */
  function decimals() external view returns (uint8);

  /**
   * @dev Returns the token symbol.
   */
  function symbol() external view returns (string memory);

  /**
  * @dev Returns the token name.
  */
  function name() external view returns (string memory);

  /**
   * @dev Returns the bep token owner.
   */
  function getOwner() external view returns (address);

  /**
   * @dev Returns the amount of tokens owned by `account`.
   */
  function balanceOf(address account) external view returns (uint256);

  /**
   * @dev Moves `amount` tokens from the caller's account to `recipient`.
   *
   * Returns a boolean value indicating whether the operation succeeded.
   *
   * Emits a {Transfer} event.
   */
  function transfer(address recipient, uint256 amount) external returns (bool);

  /**
   * @dev Returns the remaining number of tokens that `spender` will be
   * allowed to spend on behalf of `owner` through {transferFrom}. This is
   * zero by default.
   *
   * This value changes when {approve} or {transferFrom} are called.
   */
  function allowance(address _owner, address spender) external view returns (uint256);

  /**
   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
   *
   * Returns a boolean value indicating whether the operation succeeded.
   *
   * IMPORTANT: Beware that changing an allowance with this method brings the risk
   * that someone may use both the old and the new allowance by unfortunate
   * transaction ordering. One possible solution to mitigate this race
   * condition is to first reduce the spender's allowance to 0 and set the
   * desired value afterwards:
   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
   *
   * Emits an {Approval} event.
   */
  function approve(address spender, uint256 amount) external returns (bool);

  /**
   * @dev Moves `amount` tokens from `sender` to `recipient` using the
   * allowance mechanism. `amount` is then deducted from the caller's
   * allowance.
   *
   * Returns a boolean value indicating whether the operation succeeded.
   *
   * Emits a {Transfer} event.
   */
  function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

  /**
   * @dev Emitted when `value` tokens are moved from one account (`from`) to
   * another (`to`).
   *
   * Note that `value` may be zero.
   */
  event Transfer(address indexed from, address indexed to, uint256 value);

  /**
   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
   * a call to {approve}. `value` is the new allowance.
   */
  event Approval(address indexed owner, address indexed spender, uint256 value);
}

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
contract Context {
  // Empty internal constructor, to prevent people from mistakenly deploying
  // an instance of this contract, which should be used via inheritance.
  constructor () internal { }

  function _msgSender() internal view returns (address payable) {
    return msg.sender;
  }

  function _msgData() internal view returns (bytes memory) {
    this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
    return msg.data;
  }
}

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
  /**
   * @dev Returns the addition of two unsigned integers, reverting on
   * overflow.
   *
   * Counterpart to Solidity's `+` operator.
   *
   * Requirements:
   * - Addition cannot overflow.
   */
  function add(uint256 a, uint256 b) internal pure returns (uint256) {
    uint256 c = a + b;
    require(c >= a, "SafeMath: addition overflow");

    return c;
  }

  /**
   * @dev Returns the subtraction of two unsigned integers, reverting on
   * overflow (when the result is negative).
   *
   * Counterpart to Solidity's `-` operator.
   *
   * Requirements:
   * - Subtraction cannot overflow.
   */
  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
    return sub(a, b, "SafeMath: subtraction overflow");
  }

  /**
   * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
   * overflow (when the result is negative).
   *
   * Counterpart to Solidity's `-` operator.
   *
   * Requirements:
   * - Subtraction cannot overflow.
   */
  function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
    require(b <= a, errorMessage);
    uint256 c = a - b;

    return c;
  }

  /**
   * @dev Returns the multiplication of two unsigned integers, reverting on
   * overflow.
   *
   * Counterpart to Solidity's `*` operator.
   *
   * Requirements:
   * - Multiplication cannot overflow.
   */
  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
    // benefit is lost if 'b' is also tested.
    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
    if (a == 0) {
      return 0;
    }

    uint256 c = a * b;
    require(c / a == b, "SafeMath: multiplication overflow");

    return c;
  }

  /**
   * @dev Returns the integer division of two unsigned integers. Reverts on
   * division by zero. The result is rounded towards zero.
   *
   * Counterpart to Solidity's `/` operator. Note: this function uses a
   * `revert` opcode (which leaves remaining gas untouched) while Solidity
   * uses an invalid opcode to revert (consuming all remaining gas).
   *
   * Requirements:
   * - The divisor cannot be zero.
   */
  function div(uint256 a, uint256 b) internal pure returns (uint256) {
    return div(a, b, "SafeMath: division by zero");
  }

  /**
   * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
   * division by zero. The result is rounded towards zero.
   *
   * Counterpart to Solidity's `/` operator. Note: this function uses a
   * `revert` opcode (which leaves remaining gas untouched) while Solidity
   * uses an invalid opcode to revert (consuming all remaining gas).
   *
   * Requirements:
   * - The divisor cannot be zero.
   */
  function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
    // Solidity only automatically asserts when dividing by 0
    require(b > 0, errorMessage);
    uint256 c = a / b;
    // assert(a == b * c + a % b); // There is no case in which this doesn't hold

    return c;
  }

  /**
   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
   * Reverts when dividing by zero.
   *
   * Counterpart to Solidity's `%` operator. This function uses a `revert`
   * opcode (which leaves remaining gas untouched) while Solidity uses an
   * invalid opcode to revert (consuming all remaining gas).
   *
   * Requirements:
   * - The divisor cannot be zero.
   */
  function mod(uint256 a, uint256 b) internal pure returns (uint256) {
    return mod(a, b, "SafeMath: modulo by zero");
  }

  /**
   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
   * Reverts with custom message when dividing by zero.
   *
   * Counterpart to Solidity's `%` operator. This function uses a `revert`
   * opcode (which leaves remaining gas untouched) while Solidity uses an
   * invalid opcode to revert (consuming all remaining gas).
   *
   * Requirements:
   * - The divisor cannot be zero.
   */
  function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
    require(b != 0, errorMessage);
    return a % b;
  }
}

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
contract Ownable is Context {
  address private _owner;

  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

  /**
   * @dev Initializes the contract setting the deployer as the initial owner.
   */
  constructor () internal {
    address msgSender = _msgSender();
    _owner = msgSender;
    emit OwnershipTransferred(address(0), msgSender);
  }

  /**
   * @dev Returns the address of the current owner.
   */
  function owner() public view returns (address) {
    return _owner;
  }

  /**
   * @dev Throws if called by any account other than the owner.
   */
  modifier onlyOwner() {
    require(_owner == _msgSender(), "Ownable: caller is not the owner");
    _;
  }

  /**
   * @dev Leaves the contract without owner. It will not be possible to call
   * `onlyOwner` functions anymore. Can only be called by the current owner.
   *
   * NOTE: Renouncing ownership will leave the contract without an owner,
   * thereby removing any functionality that is only available to the owner.
   */
  function renounceOwnership() public onlyOwner {
    emit OwnershipTransferred(_owner, address(0));
    _owner = address(0);
  }

  /**
   * @dev Transfers ownership of the contract to a new account (`newOwner`).
   * Can only be called by the current owner.
   */
  function transferOwnership(address newOwner) public onlyOwner {
    _transferOwnership(newOwner);
  }

  /**
   * @dev Transfers ownership of the contract to a new account (`newOwner`).
   */
  function _transferOwnership(address newOwner) internal {
    require(newOwner != address(0), "Ownable: new owner is the zero address");
    emit OwnershipTransferred(_owner, newOwner);
    _owner = newOwner;
  }
}

contract BEP20Standard is Context, IBEP20, Ownable {
  using SafeMath for uint256;

  mapping (address => uint256) private _balances;

  mapping (address => mapping (address => uint256)) private _allowances;

  uint256 private _totalSupply;
  uint8 private _decimals;
  string private _symbol;
  string private _name;

  constructor() public {
    _name = "CSDN:搞编程的厨子"; //Token全称
    _symbol = "CSDN"; //Token的标识
    _decimals = 6; //精度
    _totalSupply = 10000000000000; // 100 thousand(发行量)
    _balances[msg.sender] = _totalSupply;

    emit Transfer(address(0), msg.sender, _totalSupply);
  }

  /**
   * @dev Returns the bep token owner.
   */
  function getOwner() external view returns (address) {
    return owner();
  }

  /**
   * @dev Returns the token decimals.
   */
  function decimals() external view returns (uint8) {
    return _decimals;
  }

  /**
   * @dev Returns the token symbol.
   */
  function symbol() external view returns (string memory) {
    return _symbol;
  }

  /**
  * @dev Returns the token name.
  */
  function name() external view returns (string memory) {
    return _name;
  }

  /**
   * @dev See {BEP20-totalSupply}.
   */
  function totalSupply() external view returns (uint256) {
    return _totalSupply;
  }

  /**
   * @dev See {BEP20-balanceOf}.
   */
  function balanceOf(address account) external view returns (uint256) {
    return _balances[account];
  }

  /**
   * @dev See {BEP20-transfer}.
   *
   * Requirements:
   *
   * - `recipient` cannot be the zero address.
   * - the caller must have a balance of at least `amount`.
   */
  function transfer(address recipient, uint256 amount) external returns (bool) {
    _transfer(_msgSender(), recipient, amount);
    return true;
  }

  /**
   * @dev See {BEP20-allowance}.
   */
  function allowance(address owner, address spender) external view returns (uint256) {
    return _allowances[owner][spender];
  }

  /**
   * @dev See {BEP20-approve}.
   *
   * Requirements:
   *
   * - `spender` cannot be the zero address.
   */
  function approve(address spender, uint256 amount) external returns (bool) {
    _approve(_msgSender(), spender, amount);
    return true;
  }

  /**
   * @dev See {BEP20-transferFrom}.
   *
   * Emits an {Approval} event indicating the updated allowance. This is not
   * required by the EIP. See the note at the beginning of {BEP20};
   *
   * Requirements:
   * - `sender` and `recipient` cannot be the zero address.
   * - `sender` must have a balance of at least `amount`.
   * - the caller must have allowance for `sender`'s tokens of at least
   * `amount`.
   */
  function transferFrom(address sender, address recipient, uint256 amount) external returns (bool) {
    _transfer(sender, recipient, amount);
    _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "BEP20: transfer amount exceeds allowance"));
    return true;
  }

  /**
   * @dev Atomically increases the allowance granted to `spender` by the caller.
   *
   * This is an alternative to {approve} that can be used as a mitigation for
   * problems described in {BEP20-approve}.
   *
   * Emits an {Approval} event indicating the updated allowance.
   *
   * Requirements:
   *
   * - `spender` cannot be the zero address.
   */
  function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
    _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
    return true;
  }

  /**
   * @dev Atomically decreases the allowance granted to `spender` by the caller.
   *
   * This is an alternative to {approve} that can be used as a mitigation for
   * problems described in {BEP20-approve}.
   *
   * Emits an {Approval} event indicating the updated allowance.
   *
   * Requirements:
   *
   * - `spender` cannot be the zero address.
   * - `spender` must have allowance for the caller of at least
   * `subtractedValue`.
   */
  function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
    _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "BEP20: decreased allowance below zero"));
    return true;
  }

  /**
   * @dev Moves tokens `amount` from `sender` to `recipient`.
   *
   * This is internal function is equivalent to {transfer}, and can be used to
   * e.g. implement automatic token fees, slashing mechanisms, etc.
   *
   * Emits a {Transfer} event.
   *
   * Requirements:
   *
   * - `sender` cannot be the zero address.
   * - `recipient` cannot be the zero address.
   * - `sender` must have a balance of at least `amount`.
   */
  function _transfer(address sender, address recipient, uint256 amount) internal {
    require(sender != address(0), "BEP20: transfer from the zero address");
    require(recipient != address(0), "BEP20: transfer to the zero address");

    _balances[sender] = _balances[sender].sub(amount, "BEP20: transfer amount exceeds balance");
    _balances[recipient] = _balances[recipient].add(amount);
    emit Transfer(sender, recipient, amount);
  }

  /**
   * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
   *
   * This is internal function is equivalent to `approve`, and can be used to
   * e.g. set automatic allowances for certain subsystems, etc.
   *
   * Emits an {Approval} event.
   *
   * Requirements:
   *
   * - `owner` cannot be the zero address.
   * - `spender` cannot be the zero address.
   */
  function _approve(address owner, address spender, uint256 amount) internal {
    require(owner != address(0), "BEP20: approve from the zero address");
    require(spender != address(0), "BEP20: approve to the zero address");

    _allowances[owner][spender] = amount;
    emit Approval(owner, spender, amount);
  }
}

然后找到并修改352-355行,参数为自己需要的即可.
然后如图操作:(注:编译器版本会根据程序内设置自动选择)
编译合约

部署合约:
在这里插入图片描述

弹出的钱包界面确认部署:
在这里插入图片描述
部署成功:
在这里插入图片描述
打开链上浏览器查看部署的合约:
在这里插入图片描述

4.查看并验证合约

打开合约界面,依次点击Contract -> Verify Your Contract Source Code
在这里插入图片描述

然后根据使用的编译器版本进行选择,如使用本教程的合约代码,可以如图选择:在这里插入图片描述
在这里插入图片描述

验证成功:
在这里插入图片描述
查看下我们的合约:
在这里插入图片描述

搞定,收工!

总结

教程使用测试网进行部署,正式网部署合约流程与此完全一致.需要合约定制开发的请联系Q:贰肆壹零叁伍壹柒叁(注明来意)

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
https://www.youtube.com/watch?v=Ogrd3VLX_TU)">
< <上一篇
下一篇>>