绝了!分割mask生成动漫人脸!爆肝数周,从零搭建

En点击下方“AI算法与图像处理”,一起进步!

重磅干货,第一时间送达

大家好,我是 阿潘~

很多小伙伴期待已久的实战项目来了,今天分享一个国外论坛medium大佬的文章,从 0 做项目的整个过程,具有很大的参考价值,大家感兴趣的可以试着参考这个思路去实现,比起直接跑别人现有的完整,一定能更有收获和成就感。

如果文章对你有帮助,记得“在看+点赞+分享”!

主要流程包括:

1、确定目标(分割mask ---> 动漫人脸)

2、确定技术路线(语义分割 + 语义合成)

3、实现(数据集标注 + 模型调优 + 界面编写)

PS:原作者并没有开源数据集和代码, 不过给了所有参考资料的源码和数据集链接!复现应该没有问题

ef046d288971abbb10730d18ab5b9101.png

目标

该项目的目标是建立一个深度学习模型,从分割mask生成动漫人脸肖像。

238cffa3b23dbc0cfde4fb637bb4a006.png

segmentation mask to anime face portrait

在这个项目中,首先手动标注一小批图像。然后使用数据增强和 U-Net 模型来乘以分割mask的数量来构建数据集。最后,训练一个 GauGAN 模型,用于从分割mask中合成动漫人脸。

1. 语义分割

语义分割是为图像中的每个像素分配标签(也称为类 id)的过程。它的结果是一个分割mask,它是一个大小为高度 * 宽度的数组,每个像素都包含一个类 ID。

b641aef272506cb4fd1f2db1355b561d.png

class id: 0 = background, 5 = hair

1.1 Dataset

在进入图像生成任务之前,我们需要一个分割mask数据集,用于训练生成模型将mask转换为图像。

不幸的是,我在互联网上找不到任何动漫人脸分割数据集。尽管如此,Danbooru2019-Portraits 上有一个动漫肖像(512 x 512px)数据集。所以我决定从 Danbooru 肖像中标注的分割mask。

数据集链接:https://www.gwern.net/Crops#danbooru2019-portraits

1.2 Annotation

要标注图像,我们必须确定类。最初的想法是列出 15 个类:

background, body, ear, face, eyeball, pupil, eyelash, nose, mouth, hair, hair_accessory, eyebrow, glasses, clothes, hand

后来为了简单起见,将其缩减为 7 个类,最终的类列表如下:

background, skin, face, eye, mouth, hair, clothes

有许多不同的注释工具,这里使用的是 labelme。

https://github.com/wkentaro/labelme

803536a8ac4dee684b53fe8299c8f13f.png

labelme GUI

f72e19b3adc5dffac670fbbd089aebea.gif

在这项乏味的工作上辛勤工作数周后,设法标注了 200 张图像

64dc63493ea526f181f386190bc6d5ae.png

examples of annotated masks

fc6fd86c5db567f41d27db4efaa2da09.png

left: original image, middle: segmentation mask, right: visualization of the annotation

1.3 Data Augmentation

当然,200 张带注释的图像不足以让我们训练我们的网络。我们需要使用数据增强技术来增加数据集的大小。

通过随机旋转、镜像和扭曲图像,我从这 200 个样本中生成了 3000 多个数据。换句话说,现在我有 3200 个数据。

cda2600a58660012f9d4ba9f2122ecef.png

examples of augmented masks

然而,这些数据在内容和风格方面高度重复,因为它们仅从 200 个样本中扩充而来。为了训练网络将分割掩码转换为高质量和多样化的动漫面孔,我们需要的不仅仅是 200 + 3000 个数据点。因此,我将首先使用这些数据来训练一个 U-Net 模型来学习从动漫人脸到分割掩码的翻译。然后我会将整个 Danbooru 肖像数据集输入到经过训练的 U-Net 模型中,以生成更多不同人脸的分割掩码。

30d51df4cc8769c28a2ca885fec731ac.png

anime face portraits to segmentation mask

1.4 U-Net

U-Net 最初是为了分割医学图像进行诊断而引入的。它通过使用跳跃连接来解决传统 FCN(全卷积网络)中发生的信息丢失问题,在精确分割方面做得非常好。

U-Net 的架构与 Autoencoder 相似,但从下采样端到上采样端有额外的连接层。

9db30f884c918ad4429fb4d3bb0be81e.png

source: https://arxiv.org/abs/1505.04597

在下采样部分,我使用预训练的 MobileNetV2 从输入图像中提取特征。在上采样部分,我使用了由 Conv2DTranspose、Batchnorm 和 ReLU 层组成的块。

57e1d6ac191461a78a6b0183a410b45f.png

U-Net v1, v2 architecture

在我的 U-Net 版本 1 中,输入和输出大小为 128 x 128px。经过训练的模型确实学习了从动漫人脸到分割mask的非常好的映射。但由于我想在我后来的合成模型中拥有 512 x 512px 的输入和输出,我将 U-Net 输出的大小调整为 512 x 512px 并进行插值。然而,结果看起来是像素化的,它未能捕捉到出现在小区域(例如嘴巴)中的某些类别。

在版本 2 中,我只是将输入和输出大小更改为 512 x 512px(我一开始并没有这样做,因为我不希望输出嘈杂并在图像中令人困惑的区域中填充随机点,例如 衣服)。正如我所料,v2 的输出很嘈杂。不过,它们看起来比 v1 更好。

be7d36bc6dc59fd36bdfe411d1c05777.png

U-Net v3 architecture

在版本 3 中,我尝试通过用 UpSampling2D 层替换 Conv2DTranspose 层来减轻噪音和棋盘伪影。现在的结果比 v2 的要好得多。噪音更少,棋盘伪影更少。

aec9539894dd19935236ff5ec5c1bf7b.png

checkerboard artifacts of v2

69aba26cf5779ce5157a977887b99424.png

U-Net segmentation results

最后,我将整个 Danbooru 数据集输入 U-Net v3 以构建我的分割掩码数据集。

2. 图像语义合成

现在,我们有了分割蒙版数据集,是时候深入研究主要任务——图像语义合成,正如之前所说,这不过是从分割mask到真实图像的转换的一个花哨的名称。

bbfeb380055ce0b2e7fb18d8dd81e75b.png

Semantic Image Synthesis: segmentation mask to anime face portrait

2.1 GauGAN

eecd704a645ca6a1445cba2df8ed32c6.gif

source: https://github.com/NVlabs/SPADE

GauGAN 由 Nvidia 开发,用于从分割mask合成逼真的图像。在他们的展示网站上,他们展示了 GauGAN 如何出色地通过几笔画来生成逼真的风景图像。

demo链接:https://www.nvidia.com/en-us/research/ai-playground/

7df5c9d58620aafbbe6b22ad078e593c.png

GauGAN architecture

上图展示了 GauGAN 模型的架构。绿色块完全代表发电机。鉴别器是一个 PatchGAN。

2.2 SPADE

7945cf1501f7bb101500571bda5079da.png

source: https://nvlabs.github.io/SPADE/

GauGAN 的核心是 SPADE(Spatially-Adaptive Denormalization)模块,它是从 Batch Norm 修改而来的归一化层。它旨在克服 pix2pixHD 中的挑战:在具有统一类 ID 的大区域丢失语义信息。

这是通过将 Conv 层引入Batch Norm来解决的,这样它具有不同的参数集(β,γ),这些参数以分割mask为条件,并且会随着不同的区域而变化。这意味着 SPADE 允许生成器在统一标签区域中学习更多细节。

87c06bf3a9165d1339a35d60539e9dfb.png

因此,在我们的问题中,生成的图像可能如下所示:

bb6a0780575e234c2932e18c94947cb7.png

2.3 Pretrained Encoder

encoder 实际上是可选的,因为可以直接从高斯分布中采样 z(潜在向量)而无需任何输入(就像 vanilla GAN)。这里使用了encoder ,因为我想用参考图像对生成的图像进行样式设置。

232c924d25a37e187dc2c4026c10b9cb.png

VAE architecture

由于与encoder一起训练 GauGAN 是不稳定的,需要更多的时间和资源,所以我提前使用 VAE 训练了我的编码器,然后在 GauGAN 模型的训练过程中使用预训练的encoder对 z 进行采样。

2.4 Results

以下是从不同的分割mask和参考图像生成的图像的结果。

991c0bf201aa2f6f7f417c00de790d05.png

semantic image synthesis results

2.5 Latent Attribute Vectors

除了使用参考图像来控制输出图像的风格外,我们还可以直接操纵潜在向量 z 来做到这一点。为此,我们首先需要找出潜在空间中的属性向量。

动漫角色面部最重要的属性之一是头发颜色。但是,由于数据集没有带有头发颜色的标签,我必须自己使用 i2v 来标记它们,i2v 是一个用于估计插图标签的库。然后,我们可以通过使用 t-SNE 将样本图像的潜在向量投影到 2D 空间来可视化潜在空间以及估计的标签。

b29a26366def556335d50d6836cb385c.png

t-SNE of 4000 samples (estimated hair colors are indicated by image border colors)

最后,通过计算不同标签的潜在向量之间的距离和方向,我们可以得到属性向量。下面的动画演示了使用提取的属性向量在头发颜色之间进行的转换。

3. GUI

使用 python tkinter 库创建了一个 GUI,用于编辑生成的图像和分割mask。以下是演示视频:

4. 总结

这个项目还有改进的空间,尤其是语义分割模型(U-Net)和语义图像合成模型(GauGAN)。以下是未来要做的事情的清单:

  • 寻找更好的模型架构以从原始图像中获得更准确的分割掩码

  • 改进 GauGAN 模型以消除头发区域出现的噪声

  • 训练生成模型以生成随机分割mask

参考资料

[1] D. Gwern Branwen, “Anime Crop Datasets: Faces, Figures, & Hands”, Gwern.net, 2022. https://www.gwern.net/Crops#danbooru2019-portraits

[2] “ wkentaro/labelme: Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).”, GitHub, 2022. https://github.com/wkentaro/labelme

[3] O. Ronneberger, P. Fischer and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, arXiv.org, 2022. https://arxiv.org/abs/1505.04597

[4] Odena, et al., “Deconvolution and Checkerboard Artifacts”, Distill, 2016. http://doi.org/10.23915/distill.00003

[5] “The NVIDIA AI Playground”, NVIDIA, 2022. https://www.nvidia.com/en-us/research/ai-playground/

[6] “NVlabs/SPADE: Semantic Image Synthesis with SPADE”, GitHub, 2022. https://github.com/NVlabs/SPADE

[7] “Semantic Image Synthesis with Spatially-Adaptive Normalization”, Nvlabs.github.io, 2022. https://nvlabs.github.io/SPADE/

[8] “rezoo/illustration2vec: A simple deep learning library for estimating a set of tags and extracting semantic feature vectors from given illustrations.”, GitHub, 2022. https://github.com/rezoo/illustration2vec

推荐阅读

科研人必备新神器,ReadPaper!爱了真好用!

CVPR2021 最具创造力的那些工作成果!或许这就是计算机视觉的魅力!

英伟达又一个GAN!PoE-GAN,AI绘图细节拉满,看完直接沸腾了!

如果文章对你有帮助,记得“在看+点赞+分享”!

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇
下一篇>>