梯度下降法线性回归模拟

梯度下降法原理

梯度下降法(Gradient descent)是一个一阶最优化算法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法
梯度下降方法基于以下的观察:如果实值函数

F

(

x

)

F(vec{x} )

F(x

)在点处可微且有定义,其中

x

=

(

x

1

,

x

2

,

.

.

.

,

x

n

)

vec{x}=(x_{1},x_{2},...,x_{n} )

x

=(x1,x2,...,xn)为自变量构成的向量,那么函数

F

(

x

)

F(x)

F(x)在点

a

vec{a}

a

沿着梯度相反的方向下降最快。
因而,如果

b

=

a

α

F

(

a

)

vec{b}=vec{a} -alpha bigtriangledown F(vec{a} )

b

=a

αF(a

)
对于为一个够小数值

α

>

0

alpha>0

α>0时成立,那么

F

(

a

)

>

F

(

b

)

F(vec{a} )>F(vec{b} )

F(a

)>F(b

)
考虑到这一点,我们可以从函数F的局部极小值的初始估计出发,并考虑如下序列使得

x

n

+

1

=

x

n

α

n

F

(

x

n

)

vec{x_{n+1} }=vec{x_{n}} -alpha_{n} bigtriangledown F(vec{x_{n}} )

xn+1

=xn

αnF(xn

)
因此可得到

F

(

x

0

)

F

(

x

1

)

F

(

x

2

)

.

.

.

F(vec{x_{0}} )ge F(vec{x_{1}} )ge F(vec{x_{2}} )ge...

F(x0

)F(x1

)F(x2

)...

如果顺利的话序列

x

n

vec{x_{n}}

xn

收敛到期望的极值。注意每次迭代步长可以改变。

对于给定点集

(

x

i

,

y

i

)

(x_{i},y_{i} )

(xi,yi)我们希望找到一条拟合直线(或其他曲线)来描述之。例如采用回归直线

y

^

=

w

1

x

+

w

0

hat{y}=w_{1} x+w_{0}

y^=w1x+w0来描述。由最小二乘法可以得到公式

w

1

=

i

=

1

n

x

i

y

i

x

ˉ

y

ˉ

i

=

1

n

x

i

2

n

x

ˉ

2

w

0

=

y

ˉ

w

1

x

ˉ

w_{1} =frac{sum_{i=1}^{n}x_{i}y_{i}-bar{x}bar{y} }{sum_{i=1}^{n}x_{i}^{2}-nbar{x} ^{2} },w_{0} =bar{y} -w_{1} bar{x}

w1=i=1nxi2nxˉ2i=1nxiyixˉyˉw0=yˉw1xˉ
该方法的由来是保证样本点到回归直线的度量和最小。度量可以是坐标差,欧氏距离等等,这些度量的极值点是一样的。但是对于非线性的处理可能无法直接得到度量极值点的解析解,因此需要梯度下降的数值解法来求解
梯度下降法迭代过程:定义损失函数(用方差来代替)

S

(

w

1

,

w

0

)

=

1

n

i

=

1

n

(

y

i

(

w

1

x

i

+

w

0

)

)

2

S (w_{1},w_{0}) =frac{1}{n} sum_{i=1}^{n} (y_{i} -(w_{1}x_{i} +w_{0}))^{2}

S(w1,w0)=n1i=1n(yi(w1xi+w0))2
我们要求

S

(

w

1

,

w

0

)

S (w_{1},w_{0})

S(w1,w0)的最小值。

S

w

1

=

2

i

=

1

n

(

y

i

(

w

1

x

i

+

w

0

)

)

x

i

frac{partial S}{partial w_{1} } =2sum_{i=1}^{n} (y_{i} -(w_{1}x_{i} +w_{0}))x_{i}

w1S=2i=1n(yi(w1xi+w0))xi

S

w

0

=

2

i

=

1

n

(

y

i

(

w

1

x

i

+

w

0

)

)

frac{partial S}{partial w_{0} } =2sum_{i=1}^{n} (y_{i} -(w_{1}x_{i} +w_{0}))

w0S=2i=1n(yi(w1xi+w0))
故有

S

=

2

(

i

=

1

n

(

y

i

(

w

1

x

i

+

w

0

)

)

x

i

,

i

=

1

n

(

y

i

(

w

1

x

i

+

w

0

)

)

)

bigtriangledown S=2(sum_{i=1}^{n} (y_{i} -(w_{1}x_{i} +w_{0}))x_{i},sum_{i=1}^{n} (y_{i} -(w_{1}x_{i} +w_{0})))

S=2(i=1n(yi(w1xi+w0))xi,i=1n(yi(w1xi+w0)))

设迭代次数为

k

k

k

(

w

1

(

k

+

1

)

,

w

0

(

k

+

1

)

)

=

(

w

1

(

k

)

,

w

0

(

k

)

)

α

S

(w_{1}^{(k+1)},w_{0}^{(k+1)})=(w_{1}^{(k)},w_{0}^{(k)})-alphabigtriangledown S

(w1(k+1),w0(k+1))=(w1(k),w0(k))αS
对应系数可以得到如下结果

w

1

(

k

+

1

)

=

w

1

(

k

)

+

α

i

=

1

n

(

y

i

(

w

1

(

k

)

x

i

+

w

0

(

k

)

)

)

x

i

w_{1}^{(k+1)} =w_{1}^{(k)}+alpha sum_{i=1}^{n} (y_{i} -(w_{1}^{(k)}x_{i} +w_{0}^{(k)}))x_{i}

w1(k+1)=w1(k)+αi=1n(yi(w1(k)xi+w0(k)))xi

w

0

(

k

+

1

)

=

w

0

(

k

)

+

α

i

=

1

n

(

y

i

(

w

1

(

k

)

x

i

+

w

0

(

k

)

)

)

w_{0}^{(k+1)} =w_{0}^{(k)}+alpha sum_{i=1}^{n} (y_{i} -(w_{1}^{(k)}x_{i} +w_{0}^{(k)}))

w0(k+1)=w0(k)+αi=1n(yi(w1(k)xi+w0(k)))

S

(

k

)

=

1

n

i

=

1

n

(

y

i

(

w

1

(

k

)

x

i

+

w

0

(

k

)

)

)

2

S ^{(k)} =frac{1}{n} sum_{i=1}^{n} (y_{i} -(w_{1}^{(k)}x_{i} +w_{0}^{(k)}))^{2}

S(k)=n1i=1n(yi(w1(k)xi+w0(k)))2
式中

k

k

k为迭代次数,

S

S

S为度量和,我们用方差来表示,

α

alpha

α为学习参数。初始的

w

1

w_{1}

w1

w

0

w_{0}

w0可以任意选取。理论上对学习参数

α

alpha

α有取值范围限制。在不断迭代的过程中,方差

S

S

S会逐步收敛到极小值点(在本例中极小值点有且仅有一个)。理论上对学习参数

α

alpha

α有取值范围限制,我们需要合理调整

α

alpha

α值,防止计算机运行中数据溢出。不同的

α

alpha

α会使得收敛速度有一定的区别,有时会使方差

S

S

S在最小值周围游离不定,因此

α

alpha

α的选取十分重要。当

S

S

S到达极小值时,

w

1

w_{1}

w1

w

0

w_{0}

w0也收敛,这就是我们需要寻找的直线。判断收敛的方法与柯西极限理论一致,即对任给的

ε

>

0

varepsilon>0

ε>0总存在

k

k

k使得

S

(

k

+

1

)

S

(

k

)

<

ε

|S ^{(k+1)} -S ^{(k)}|<varepsilon

S(k+1)S(k)<ε成立。
在理论上可以得到

lim

k

S

(

k

)

=

1

n

i

=

1

n

(

(

y

i

y

ˉ

)

i

=

1

n

x

i

y

i

x

ˉ

y

ˉ

i

=

1

n

x

i

2

n

x

ˉ

2

(

x

i

x

ˉ

)

)

2

lim_{k to infty} S ^{(k)}=frac{1}{n} sum_{i=1}^{n} ((y_{i}-bar{y}) -frac{sum_{i=1}^{n}x_{i}y_{i}-bar{x}bar{y} }{sum_{i=1}^{n}x_{i}^{2}-nbar{x} ^{2} }(x_{i}-bar{x}) )^{2}

klimS(k)=n1i=1n((yiyˉ)i=1nxi2nxˉ2i=1nxiyixˉyˉ(xixˉ))2

数据

本例采用的线性回归样本点数据如下(从百度网盘提取):
百度网盘数据分享,提取码:o5s6

代码

注释写得很详细喇!仔细看就能明白的

# 天津大学电气自动化与信息工程学院
# 开发时间:2022/3/26 13:05

import xlrd as xd
import numpy as np
import matplotlib.pyplot as plt

# matplotlib画图中中文显示会有问题,需要这两行设置默认字体可以显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# ---------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------
# # 函数定义

# 求方差函数:∑(yi-hw(x))^2/n
def VarSolve (x,                            # 自变量列表
              y,                            # 因变量列表
              w1,                           # 上一次迭代的斜率
              w0):                          # 上一次迭代的截距
    Variance = 0                            # 定义初始方差为0
    for i in range(len(x)):
        Variance = Variance + (y[i] - (w1 * x[i] + w0))**2 / len(x)
    return Variance

# 求w1增量函数:∑(yi-hw(x))xi/n
def Del_w1 (x,                              # 自变量列表
            y,                              # 因变量列表
            w1,                             # 上一次迭代的斜率
            w0):                            # 上一次迭代的截距
    SumDel = 0
    for i in range(len(x)):
        SumDel = SumDel + (y[i] - (w1 * x[i] + w0)) * x[i] / len(x)
    return SumDel

# 求w0增量函数:∑(yi-hw(x))/n
def Del_w0 (x,                              # 自变量列表
            y,                              # 因变量列表
            w1,                             # 上一次迭代的斜率
            w0):                            # 上一次迭代的截距
    SumDel = 0
    for i in range(len(x)):
        SumDel = SumDel + (y[i] - (w1 * x[i] + w0)) / len(x)
    return SumDel

# 最小二乘法线性回归函数LSM(Least Square Method),
# 返回回归方程的斜率和截距
def LSM (x, y):                             # x, y分别为自变量列表和因变量列表
    Avr_x, Avr_y, Avr_xy, Avr_x2 = 0, 0, 0, 0
    # 容错,若输入自变量与因变量长度不相同,直接退出计算
    if len(x) != len(y) | len(x) <= 0 | len(y) <= 0:
        return
    else:
        for i in range(len(x)):
            Avr_x = Avr_x + x[i] / len(x)
            Avr_y = Avr_y + y[i] / len(y)
            Avr_xy = Avr_xy + x[i] * y[i] / len(x)
            Avr_x2 = Avr_x2 + x[i] ** 2 / len(x)

        w1Thry = (Avr_xy - Avr_x * Avr_y) / (Avr_x2 - Avr_x ** 2)
        w0Thry = Avr_y - w1Thry * Avr_x
        return w1Thry, w0Thry

# 梯度下降法GDM(Gradient Descent Method),
# 返回回归方程的斜率和截距(及其列表)、收敛后的方差列表
def GDM (x,                                 # 自变量列表
         y,                                 # 因变量列表
         Alpha = 0.01,                      # 学习参数,默认0.01
         err = 1e-8):                       # 误差,默认1e-8
    # 容错,若输入自变量与因变量长度不相同,直接退出计算
    if len(x) != len(y) | len(x) <= 0 | len(y) <= 0:
        return
    else:
        w1, w0 = Del_w1(x, y, 0, 0), Del_w0(x, y, 0, 0)
        # 方差、w1, w0 列表,每次迭代后的方差放置在列表Variance中
        Variance = []
        W1list = []
        W0list = []
        # 列表中先添加初始条件的第一个元素
        Variance.append(VarSolve(x, y, w1, w0))
        W1list.append(w1)
        W0list.append(w0)
        IterTime = 0                        # 迭代次数

        # 梯度下降法的实现原理
        while 1:

            # 每次迭代,w1增加α∑(yi-hw(x))xi/n, w0增加α∑(yi-hw(x))/n
            w1, w0 = w1 + Alpha * Del_w1(x, y, w1, w0), w0 + Alpha * Del_w0(x, y, w1, w0)
            Variance.append(VarSolve(x, y, w1, w0))
            W1list.append(w1)
            W0list.append(w0)
            IterTime = IterTime + 1

            # 用方差Variance是否收敛到误差范围内来判断是否结束循环
            if abs(Variance[IterTime] - Variance[IterTime - 1]) < err:
                break

        return w1, w0, Variance, W1list, W0list

# ---------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------
# # 读取数据
# 打开excel表所在路径
data = xd.open_workbook('Sta2.xls')
# 读取数据,以excel表名来打开
sheet = data.sheet_by_name('Sheet1')
x_with_y = []
x = []
y = []

# 将表中数据按行逐步添加到列表中,最后转换为list结构
for r in range(sheet.nrows):
    data1 = []
    for c in range(sheet.ncols):
        data1.append(sheet.cell_value(r, c))
    x_with_y.append(list(data1))
    x.append(data1[0])
    y.append(data1[1])
# print(x)
# print(y)
# 将列表中的数据存储到两个list x和y 中
# ---------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------
# # 数据处理

# 计算收敛方差和回归直线
Alpha = 0.01                    # 学习参数
err = 1e-8                      # 误差限

# w1,w0使用梯度下降法求出的直线的斜率和截距
w1, w0, Variance, W1list, W0list = GDM(x, y, Alpha, err)

# 最后收敛后的方差
VarInter = Variance[len(Variance) - 1]

# 绘制收敛方差直线的列表
VarIList = []
for i in range(len(Variance)):
    VarIList.append(VarInter)

# 绘制收敛方差w1的列表
W1IList = []
for i in range(len(W1list)):
    W1IList.append(w1)

# 绘制收敛方差w0的列表
W0IList = []
for i in range(len(W0list)):
    W0IList.append(w0)

# 将列表x, y, VarIList 等转化为矩阵向量,以便matplotlib绘图
X = np.c_[x]
Y = np.c_[y]
V = np.c_[VarIList]
W1 = np.c_[W1list]
W0 = np.c_[W0list]
Y1 = w1 * X + w0

# w1, w0 的理论值(最小二乘法计算)
# w1Thry, w0Thry = 1.19303, -3.89578
w1Thry, w0Thry = LSM(x, y)
Y1Thry = w1Thry * X + w0Thry

# -----------------------------------------------------------------------------------
# -----------------------------------------------------------------------------------
# -----------------------------------------------------------------------------------
# # 绘图
plt.figure('梯度下降法拟合直线')

# 绘制回归方程
strl1 = 'y=' + str(round(w1, 3)) + 'x' + str(round(w0, 3))
strl2 = 'y=' + str(round(w1Thry, 3)) + 'x' + str(round(w0Thry, 3))
plt.subplot(1, 2, 1)
plt.title('数据散点与拟合直线')
plt.xlabel('x')
plt.ylabel('y')
plt.scatter(X, Y, c='r', marker='+')
plt.plot(X, Y1, 'k', label='梯度下降法拟合直线'+strl1)
plt.plot(X, Y1Thry, c='g', label='最小二乘法拟合的理论直线'+strl2)
plt.legend()

# 绘制误差函数收敛过程函数
str0 = '方差收敛到' + str(round(VarInter, 5)) + ',误差不超过'+str(err)
plt.subplot(2, 2, 2)
plt.title('方差收敛过程,学习参数α='+str(Alpha))
plt.xlabel('迭代次数')
plt.ylabel('方差')
plt.loglog(Variance, color='k')
plt.plot(V, '--', label=str0, c='k')
plt.legend()

# 绘制w1, w0收敛过程函数
strw1 = '斜率收敛到'+str(round(w1, 3))+',与理论值的误差为'+str(round(100 * abs((w1-w1Thry) / w1Thry), 3))+'%'
strw0 = '斜率收敛到'+str(round(w0, 3))+',与理论值的误差为'+str(round(100 * abs((w0-w0Thry) / w0Thry), 3))+'%'
plt.subplot(2, 2, 4)
plt.title('w1和w0收敛过程')
plt.semilogx(W1, color='r', label='斜率w1变化曲线')
plt.semilogx(W0, color='b', label='截距w0变化曲线')
plt.plot(W1IList, '--', label=strw1, c='r')
plt.plot(W0IList, '--', label=strw0, c='b')
plt.ylim((-10, 20))
plt.xlabel('迭代次数')
plt.ylabel('w1 或 w0')
plt.legend()

plt.show()

结果如下图:
在这里插入图片描述
如果采用二次函数

y

^

=

w

2

x

2

+

w

1

x

+

w

0

hat{y}=w_{2} x^{2}+w_{1}x+w_{0}

y^=w2x2+w1x+w0对该样本数据进行回归模拟,定义损失函数

S

(

w

2

,

w

1

,

w

0

)

=

1

n

i

=

1

n

(

y

i

(

w

2

x

2

+

w

1

x

+

w

0

)

)

2

S (w_{2},w_{1},w_{0}) =frac{1}{n} sum_{i=1}^{n} (y_{i} -(w_{2} x^{2}+w_{1}x+w_{0}))^{2}

S(w2,w1,w0)=n1i=1n(yi(w2x2+w1x+w0))2

S

w

2

=

2

i

=

1

n

(

y

i

(

w

1

x

i

+

w

0

)

)

x

i

2

frac{partial S}{partial w_{2} } =2sum_{i=1}^{n} (y_{i} -(w_{1}x_{i} +w_{0}))x_{i}^{2}

w2S=2i=1n(yi(w1xi+w0))xi2

S

w

1

=

2

i

=

1

n

(

y

i

(

w

1

x

i

+

w

0

)

)

x

i

frac{partial S}{partial w_{1} } =2sum_{i=1}^{n} (y_{i} -(w_{1}x_{i} +w_{0}))x_{i}

w1S=2i=1n(yi(w1xi+w0))xi

S

w

0

=

2

i

=

1

n

(

y

i

(

w

1

x

i

+

w

0

)

)

frac{partial S}{partial w_{0} } =2sum_{i=1}^{n} (y_{i} -(w_{1}x_{i} +w_{0}))

w0S=2i=1n(yi(w1xi+w0))
迭代公式变成

w

2

(

k

+

1

)

=

w

2

(

k

)

+

α

i

=

1

n

(

y

i

(

w

1

(

k

)

x

i

+

w

0

(

k

)

)

)

x

i

2

w_{2}^{(k+1)} =w_{2}^{(k)}+alpha sum_{i=1}^{n} (y_{i} -(w_{1}^{(k)}x_{i} +w_{0}^{(k)}))x_{i}^{2}

w2(k+1)=w2(k)+αi=1n(yi(w1(k)xi+w0(k)))xi2

w

1

(

k

+

1

)

=

w

1

(

k

)

+

α

i

=

1

n

(

y

i

(

w

1

(

k

)

x

i

+

w

0

(

k

)

)

)

x

i

w_{1}^{(k+1)} =w_{1}^{(k)}+alpha sum_{i=1}^{n} (y_{i} -(w_{1}^{(k)}x_{i} +w_{0}^{(k)}))x_{i}

w1(k+1)=w1(k)+αi=1n(yi(w1(k)xi+w0(k)))xi

w

0

(

k

+

1

)

=

w

0

(

k

)

+

α

i

=

1

n

(

y

i

(

w

1

(

k

)

x

i

+

w

0

(

k

)

)

)

w_{0}^{(k+1)} =w_{0}^{(k)}+alpha sum_{i=1}^{n} (y_{i} -(w_{1}^{(k)}x_{i} +w_{0}^{(k)}))

w0(k+1)=w0(k)+αi=1n(yi(w1(k)xi+w0(k)))

S

(

k

)

=

1

n

i

=

1

n

(

y

i

(

w

2

(

k

)

x

i

2

+

w

1

(

k

)

x

i

+

w

0

(

k

)

)

)

2

S ^{(k)} =frac{1}{n} sum_{i=1}^{n} (y_{i} -(w_{2}^{(k)}x_{i}^{2}+w_{1}^{(k)}x_{i} +w_{0}^{(k)}))^{2}

S(k)=n1i=1n(yi(w2(k)xi2+w1(k)xi+w0(k)))2

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇
下一篇>>