Python MINIST手写集的识别,卷积神经网络,CNN(最简单PyTorch的使用)

网络结构

在这里插入图片描述
按顺序对每个层的参数设置
Conv1

Conv2d:in_channels=1, out_channels=16, kernel_size=3, stride=1
BatchNorm2d:16
ReLU
MaxPool2d:kernel_size=2, stride=1

Conv2

Conv2d:in_channels=16, out_channels=32, kernel_size=3, stride=1
BatchNorm2d:32
ReLU
MaxPool2d:kernel_size=2, stride=1

Conv3

Conv2d:in_channels=32, out_channels=64, kernel_size=3, stride=1
BatchNorm2d:64
ReLU
AvgPool2d:kernel_size=2, stride=1

Conv4

Conv2d:in_channels=64, out_channels=128, kernel_size=3, stride=1
BatchNorm2d:128
ReLU
AvgPool2d:kernel_size=2, stride=1

MLP

Linear(128 * 16 * 16, 1000)
Linear(1000, 1000)
Linear(1000, 100)
Linear(100, 10)

输出图像尺寸

在这里插入图片描述
计算公式(lambda函数化)

func = lambda size, kernel=3, stride=1, padding=0: ((size - kernel + 2 * padding) / stride + 1)

代码通过显式获取图片长宽,并且结合网络层的构造可以自动计算图像尺寸的变换

func = lambda size, kernel=3, stride=1, padding=0: ((size - kernel + 2 * padding) / stride + 1)
        x = func(func(self.options[1]), kernel=2)
        x = func(func(x), kernel=2)
        x = func(func(x), kernel=2)
        x = func(func(x), kernel=2)

        y = func(func(self.options[2]), kernel=2)
        y = func(func(y), kernel=2)
        y = func(func(y), kernel=2)
        y = func(func(y), kernel=2)

        x = int(x)
        y = int(y)

网络代码

class CNN(nn.Module):
    def __init__(self, channels, width, height, classes, device='cpu'):
        super().__init__()

        self.options = [channels, width, height, classes, device]

        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels=channels, out_channels=16, kernel_size=3, stride=1),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=1)
        )

        self.conv2 = nn.Sequential(
            nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=1)
        )

        self.conv3 = nn.Sequential(
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.AvgPool2d(kernel_size=2, stride=1)
        )

        self.conv4 = nn.Sequential(
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.AvgPool2d(kernel_size=2, stride=1)
        )

        func = lambda size, kernel=3, stride=1, padding=0: ((size - kernel + 2 * padding) / stride + 1)
        x = func(func(self.options[1]), kernel=2)
        x = func(func(x), kernel=2)
        x = func(func(x), kernel=2)
        x = func(func(x), kernel=2)

        y = func(func(self.options[2]), kernel=2)
        y = func(func(y), kernel=2)
        y = func(func(y), kernel=2)
        y = func(func(y), kernel=2)

        x = int(x)
        y = int(y)

        self.mlp = nn.Sequential(
            nn.Linear(128 * x * y, 1000),
            nn.Linear(1000, 1000),
            nn.Linear(1000, 100),
            nn.Linear(100, self.options[3])
        )

        self = self.to(self.options[4])

    def forward(self, data):
        data = data.to(self.options[4])  # 将向量转移到设备上
        data = self.conv1(data)
        data = self.conv2(data)
        data = self.conv3(data)
        data = self.conv4(data)
        data = data.view(data.size(0), -1)
        data = self.mlp(data)
        return data

预处理代码

data_tf = torchvision.transforms.Compose(
    [
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize([0.5], [0.5])
    ]
)

data_path = r'data/minist'  # minist数据集的下载路径
# 获取数据集
train_data = mnist.MNIST(data_path, train=True, transform=data_tf, download=False)
test_data = mnist.MNIST(data_path, train=False, transform=data_tf, download=False)
train_loader = data.DataLoader(train_data, batch_size=128, shuffle=True)
test_loader = data.DataLoader(test_data, batch_size=128, shuffle=True)

训练代码

device = 'cuda:0'
model = CNN(channels=1, width=28, height=28, classes=10, device=device)
loss_func = torch.nn.CrossEntropyLoss()
opt = torch.optim.Adam(model.parameters(), lr=0.001)
loss_count = []

for epoch in range(50):
    for i, (x, y) in enumerate(train_loader):

        batch_x = Variable(x)
        batch_y = Variable(y).to(device)
        out = model(batch_x)

        loss = loss_func(out, batch_y)

        opt.zero_grad()
        loss.backward()
        opt.step()

        if i % 20 == 0:
            loss = loss.cpu()
            loss_count.append(loss)

    for a, b in test_loader:
        test_x = Variable(a)
        test_y = Variable(b).to(device)
        out = model(test_x)
        test_y = test_y.cpu()
        out = out.cpu()
        accuracy = max(out, 1)[1].numpy() == test_y.numpy()
        print('accuracy:t', accuracy.mean())
        break

datas = []
for i in loss_count:
    if i.data < 0.5:
        datas.append(i.data)
plt.figure('LOSS')
plt.plot(datas, label='Loss')
plt.legend()
plt.show()

因为交叉熵损失会出现大于1的值,所以显示的时候删除掉损失大于0.5的值,会更好的显示损失图

结果评定

在这里插入图片描述
在这里插入图片描述

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇
下一篇>>