# 二、PID控制算法详解

## 2.1 比例控制算法

error=T-Tn

U

=

k

p

e

r

r

o

r

U = k_p * error

U=kperror
initial: T=1; Tn=0.2, error=1-0.2=0.8; kp=0.4

### 2.1.1 比例控制python简单示意

T=1
Tn=0.2
error=1-0.2
kp=0.4

for t in range(1, 10):
U = kp * error
Tn += U
error = T-Tn
print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')

"""
t=1 | add 0.32000 => Tn=0.52000 error=0.48000
t=2 | add 0.19200 => Tn=0.71200 error=0.28800
t=3 | add 0.11520 => Tn=0.82720 error=0.17280
t=4 | add 0.06912 => Tn=0.89632 error=0.10368
t=5 | add 0.04147 => Tn=0.93779 error=0.06221
t=6 | add 0.02488 => Tn=0.96268 error=0.03732
t=7 | add 0.01493 => Tn=0.97761 error=0.02239
t=8 | add 0.00896 => Tn=0.98656 error=0.01344
t=9 | add 0.00537 => Tn=0.99194 error=0.00806
"""


### 2.1.2 比例控制存在的一些问题

U

=

k

p

e

r

r

o

r

=

0.1

=

>

e

r

r

o

r

=

0.1

/

0.4

=

0.25

U=k_p*error=0.1 => error = 0.1/0.4 = 0.25

U=kperror=0.1=>error=0.1/0.4=0.25，所以误差永远保持在0.25

T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1

for t in range(1, 100):
U = kp * error
Tn += U - extra_drop
error = T-Tn
print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')

"""
t=95 | add 0.10000 => Tn=0.75000 error=0.25000
t=96 | add 0.10000 => Tn=0.75000 error=0.25000
t=97 | add 0.10000 => Tn=0.75000 error=0.25000
t=98 | add 0.10000 => Tn=0.75000 error=0.25000
t=99 | add 0.10000 => Tn=0.75000 error=0.25000
"""


• 比如控制汽车运动，摩擦阻力就相当于是"漏水"
• 控制机械臂、无人机的飞行，各类阻力和消耗相当于"漏水"

## 2.2 积分控制算法(消除稳态误差)

U

=

k

p

e

r

r

o

r

+

k

i

e

r

r

o

r

U = k_p*error + k_i * sum error

U=kperror+kierror

• e

r

r

o

r

sum error

: 误差累计

• k

i

k_i

: 积分控制系数

### 2.2.1 python简单实现

T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1
ki=0.2
sum_error = 0

for t in range(1, 20):
sum_error += error
U = kp * error + ki * sum_error
Tn += U - extra_drop
error = T-Tn
print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')

"""
t=14 | add 0.10930 => Tn=0.97665 error=0.02335
t=15 | add 0.11025 => Tn=0.98690 error=0.01310
t=16 | add 0.10877 => Tn=0.99567 error=0.00433
t=17 | add 0.10613 => Tn=1.00180 error=-0.00180
t=18 | add 0.10332 => Tn=1.00512 error=-0.00512
t=19 | add 0.10097 => Tn=1.00608 error=-0.00608
"""


## 2.3 微分控制算法(减少控制中的震荡)

U

=

k

d

(

e

r

r

o

r

t

e

r

r

o

r

t

1

)

U=k_d*(error_t - error_{t-1})

U=kd(errorterrort1)

• kd: 微分控制系数
• d_error/d_t ~= error_t - error_t_1：误差的变化

### 加入微分控制算法的python简单示意

T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1

ki=0.2
sum_error = 0

kd=0.2
d_error = 0
error_n = 0
error_b = 0

for t in range(1, 20):
error_b = error_n
error_n = error
# print(error_b1, error_b2)
d_error = error_n - error_b if t >= 2 else 0
sum_error += error
U = kp * error + ki * sum_error + kd * d_error
Tn += U - extra_drop
error = T-Tn
print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}')

"""
t=14 | add 0.09690 => Tn=0.96053 error=0.03947 | d_error: 0.01319
t=15 | add 0.10402 => Tn=0.96455 error=0.03545 | d_error: 0.00310
t=16 | add 0.10808 => Tn=0.97263 error=0.02737 | d_error: -0.00402
t=17 | add 0.10951 => Tn=0.98214 error=0.01786 | d_error: -0.00808
t=18 | add 0.10899 => Tn=0.99113 error=0.00887 | d_error: -0.00951
t=19 | add 0.10727 => Tn=0.99840 error=0.00160 | d_error: -0.00899
"""


## 2.4 PID算法总结

pid = 比例控制(基本控制) + 积分控制（消除稳态误差）+微分控制（减少震荡）

U

(

t

)

=

K

p

e

r

r

o

r

t

+

K

i

i

=

0

t

e

r

r

o

r

i

+

K

d

(

e

r

r

o

r

t

e

r

r

o

r

t

1

)

U(t) = K_p * error_t + K_isum_{i=0}^{t}error_i + K_d*(error_t - error_{t-1})

U(t)=Kperrort+Kii=0terrori+Kd(errorterrort1)

• K

p

K_p

：快速调整 比例控制P control能够提高系统的响应速度和稳态精度,抑制扰动对系统稳态的影响。但过大的比例控制容易导致系统超调和振荡，并且有可能使得系统变得不稳定。 纯比例控制并不能消除稳态误差，存在静差。

• K

i

K_i

：准确到最终目标，积分控制能够消除0型系统对于常值输入信号和常值扰动造成的输出稳态误差，可以与P control一起组成PI control。积分控制的常数 根据系统所需的动态进去选取，并不会影响消除误差的效果，具有一定的鲁棒性。

• K

d

K_d

: 稳步迭代， 微分器会对高频噪音有放大的效果

for kp_i in np.linspace(0, 1, 10):
pid_plot(kp=kp_i, ki=0.2, kd=0.2)

for ki_i in np.linspace(0, 1, 10):
pid_plot(kp=0.5, ki=ki_i, kd=0.2)

for kd_i in np.linspace(0, 1, 10):
pid_plot(kp=0.5, ki=0.2, kd=kd_i)

pid_plot(kp=0.65, ki=0.05, kd=0.5, print_flag=True)

# 三、牛顿法调参

from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np

def pid_plot(args, plot_flag=True, print_flag=False):
kp, ki, kd = args
T=1
Tn=0.2
error=1-0.2
extra_drop = 0.1
sum_error = 0
d_error = 0
error_n = 0
error_b = 0
Tn_list = []
for t in range(1, 100):
error_b = error_n
error_n = error
d_error = error_n - error_b if t >= 2 else 0
sum_error += error
U = kp * error + ki * sum_error + kd * d_error
Tn += U - extra_drop
error = T-Tn
Tn_list.append(Tn)
if print_flag:
print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}')

if plot_flag:
plt.plot(Tn_list)
plt.axhline(1, linestyle='--', color='darkred', alpha=0.8)
plt.title(f'$K_p$={kp:.3f} $K_i$={ki:.3f} $K_d$={kd:.3f}')
plt.ylim([0, max(Tn_list) + 0.2])
plt.show()

loss = np.sqrt(np.mean(np.square(np.ones_like(Tn_list) - np.array(Tn_list))))
return loss

boundaries=[(0, 2), (0, 2), (0, 2)]
res = optimize.fmin_l_bfgs_b(pid_plot, np.array([0.1, 0.1, 0.1]), args=(False, False), bounds = boundaries, approx_grad = True)

pid_plot(res[0].tolist(), print_flag=True)
pid_plot([0.65, 0.05, 0.5], print_flag=True)

• 牛顿法调参结果图示
• 简单手动调参图示

THE END