SVM 超平面计算例题

SVM Summary

在这里插入图片描述

Example

Suppose the dataset contains two positive samples

x

(

1

)

=

[

1

,

1

]

T

x^{(1)}=[1,1]^T

x(1)=[1,1]T and

x

(

2

)

=

[

2

,

2

]

T

x^{(2)}=[2,2]^T

x(2)=[2,2]T, and two negative samples

x

(

3

)

=

[

0

,

0

]

T

x^{(3)}=[0,0]^T

x(3)=[0,0]T and

x

(

4

)

=

[

1

,

0

]

T

x^{(4)}=[-1,0]^T

x(4)=[1,0]T. Please calculate the SVM decision hyperplane.

Calculate

min

λ

 

J

(

λ

)

=

1

2

i

=

1

N

j

=

1

N

λ

i

λ

j

y

(

i

)

y

(

j

)

(

x

(

i

)

)

T

x

(

j

)

i

=

1

N

λ

i

min_lambda {mathcal{J}(lambda)} = frac{1}{2}sum_{i=1}^Nsum_{j=1}^N lambda_ilambda_jy^{(i)}y^{(j)}(x^{(i)})^Tx^{(j)} - sum_{i=1}^Nlambda_i

λmin J(λ)=21i=1Nj=1Nλiλjy(i)y(j)(x(i))Tx(j)i=1Nλi

s

.

t

.

        

λ

i

0

,

      

i

=

1

N

λ

i

y

(

i

)

=

0

s.t. lambda_i geqslant 0, sum_{i=1}^Nlambda_iy^{(i)}=0

s.t.        λi0,      i=1Nλiy(i)=0

D

a

t

a

s

e

t

 

D

:

{

x

:

{

[

1

,

1

]

,

[

2

,

2

]

,

[

0

,

0

]

,

[

1

,

0

]

}

,

y

:

{

1

,

1

,

1

,

1

}

}

Dataset D:{x:{[1,1],[2,2],[0,0],[-1,0]},y:{1,1,-1,-1}}

Dataset D:{x:{[1,1],[2,2],[0,0],[1,0]},y:{1,1,1,1}}可得下式:

min

λ

 

J

(

λ

)

=

1

2

(

2

λ

1

2

+

8

λ

2

2

+

λ

4

2

+

8

λ

1

λ

2

+

2

λ

1

λ

4

+

4

λ

2

λ

4

)

λ

1

λ

2

λ

3

λ

4

s

.

t

       

λ

1

0

,

λ

2

0

,

λ

3

0

,

λ

4

0

λ

1

+

λ

2

λ

3

λ

4

=

0

min_lambda {mathcal{J}(lambda)} = frac{1}{2}(2lambda_1^2+8lambda_2^2+lambda_4^2+8lambda_1lambda_2+2lambda_1lambda_4+4lambda_2lambda_4) \- lambda_1-lambda_2-lambda_3-lambda_4\ s.t lambda_1 geqslant 0,lambda_2geqslant 0,lambda_3geqslant 0,lambda_4geqslant 0\ lambda_1+lambda_2-lambda_3-lambda_4 = 0

λmin J(λ)=21(2λ12+8λ22+λ42+8λ1λ2+2λ1λ4+4λ2λ4)λ1λ2λ3λ4s.t       λ10,λ20,λ30,λ40λ1+λ2λ3λ4=0
since

λ

1

+

λ

2

=

λ

3

+

λ

4

λ

3

=

λ

1

+

λ

2

λ

4

lambda_1+lambda_2 = lambda_3+lambda_4 to lambda_3 = lambda_1+lambda_2 - lambda_4

λ1+λ2=λ3+λ4λ3=λ1+λ2λ4:

min

λ

 

J

(

λ

)

=

λ

1

2

+

4

λ

2

2

+

1

2

λ

4

2

+

4

λ

1

λ

2

+

λ

1

λ

4

+

2

λ

2

λ

4

2

λ

1

2

λ

2

s

.

t

       

λ

1

0

,

λ

2

0

{

J

λ

1

=

2

λ

1

+

4

λ

2

+

λ

4

2

=

0

J

λ

2

=

4

λ

1

+

8

λ

2

+

2

λ

4

2

=

0

J

λ

4

=

λ

1

+

2

λ

2

+

λ

4

=

0

min_lambda {mathcal{J}(lambda)} = lambda_1^2+4lambda_2^2+frac{1}{2}lambda_4^2+4lambda_1lambda_2+lambda_1lambda_4+2lambda_2lambda_4 - 2lambda_1-2lambda_2\ s.t lambda_1 geqslant 0,lambda_2geqslant 0 \ \ Longrightarrow ^{求偏导}\ left{begin{matrix} frac{partial mathcal{J}}{partial lambda_1} = 2lambda_1 +4lambda_2+lambda_4-2=0 \ frac{partial mathcal{J}}{partial lambda_2} = 4lambda_1 +8lambda_2+2lambda_4-2=0 \ frac{partial mathcal{J}}{partial lambda_4} = lambda_1 +2lambda_2+lambda_4=0 end{matrix}right.

λmin J(λ)=λ12+4λ22+21λ42+4λ1λ2+λ1λ4+2λ2λ42λ12λ2s.t       λ10,λ20λ1J=2λ1+4λ2+λ42=0λ2J=4λ1+8λ2+2λ42=0λ4J=λ1+2λ2+λ4=0
Lagrange无解,所以极小值在边界上:

  • λ

    1

    =

    0

    λ

    3

    =

    λ

    1

    +

    λ

    2

    λ

    4

    lambda_1 = 0, lambda_3 = lambda_1+lambda_2 - lambda_4

    λ1=0λ3=λ1+λ2λ4带入

    J

    (

    λ

    )

    mathcal{J}(lambda)

    J(λ)中,得:

    J

    (

    λ

    )

    =

    4

    λ

    2

    2

    +

    1

    2

    λ

    4

    2

    +

    +

    2

    λ

    2

    λ

    4

    2

    λ

    2

    {

    J

    λ

    2

    =

    8

    λ

    2

    +

    2

    λ

    4

    2

    =

    0

    J

    λ

    4

    =

    2

    λ

    2

    +

    λ

    4

    =

    0

    {

    λ

    2

    =

    1

    2

    λ

    4

    =

    1

    (

    0

        

    s

    .

    t

    .

    )

    λ

    2

    =

    0

    ,

    λ

    4

    =

    0

    J

    (

    λ

    )

    =

    0

    λ

    4

    =

    0

    ,

    λ

    2

    =

    1

    4

    J

    (

    λ

    )

    =

    1

    4

    mathcal{J}(lambda) = 4lambda_2^2+frac{1}{2}lambda_4^2++2lambda_2lambda_4 -2lambda_2 \ \ Longrightarrow ^{求偏导}\ left{begin{matrix} frac{partial mathcal{J}}{partial lambda_2} = 8lambda_2+2lambda_4-2=0 \ frac{partial mathcal{J}}{partial lambda_4} = 2lambda_2+lambda_4=0 end{matrix}right. Longrightarrow left{begin{matrix} lambda_2=frac{1}{2} \ lambda_4=-1(le0 不满足s.t.) end{matrix}right.\ 再令:\ lambda_2 = 0,则lambda_4=0, mathcal{J}(lambda) = 0;\ 或lambda_4 = 0,则lambda_2=frac{1}{4}, mathcal{J}(lambda) = -frac{1}{4};

    J(λ)=4λ22+21λ42++2λ2λ42λ2{λ2J=8λ2+2λ42=0λ4J=2λ2+λ4=0{λ2=21λ4=1(0    s.t.)λ2=0,λ4=0J(λ)=0λ4=0,λ2=41J(λ)=41

同理可得:

  • λ

    2

    =

    0

    lambda_2 = 0

    λ2=0

    λ

    1

    =

    0

    ,

    λ

    4

    =

    0

    J

    (

    λ

    )

    =

    0

    λ

    4

    =

    0

    ,

    λ

    1

    =

    1

    J

    (

    λ

    )

    =

    1

    lambda_1 = 0,则lambda_4=0, mathcal{J}(lambda) = 0;\ 或lambda_4 = 0,则lambda_1=1, mathcal{J}(lambda) =-1;

    λ1=0,λ4=0J(λ)=0λ4=0,λ1=1J(λ)=1

  • λ

    3

    =

    0

    lambda_3 = 0

    λ3=0

    λ

    1

    =

    0

    ,

    λ

    2

    =

    2

    13

    J

    (

    λ

    )

    =

    2

    13

    λ

    2

    =

    0

    ,

    λ

    1

    =

    2

    5

    J

    (

    λ

    )

    =

    2

    5

    lambda_1 = 0,则lambda_2=frac{2}{13}, mathcal{J}(lambda) = -frac{2}{13};\ 或lambda_2 = 0,则lambda_1=frac{2}{5}, mathcal{J}(lambda) =-frac{2}{5};

    λ1=0,λ2=132J(λ)=132λ2=0,λ1=52J(λ)=52

  • λ

    4

    =

    0

    lambda_4 = 0

    λ4=0

    λ

    1

    =

    0

    ,

    λ

    2

    =

    1

    4

    J

    (

    λ

    )

    =

    1

    4

    λ

    2

    =

    0

    ,

    λ

    1

    =

    1

    J

    (

    λ

    )

    =

    1

    lambda_1 = 0,则lambda_2=frac{1}{4}, mathcal{J}(lambda) = -frac{1}{4};\ 或lambda_2 = 0,则lambda_1=1, mathcal{J}(lambda) =-1;

    λ1=0,λ2=41J(λ)=41λ2=0,λ1=1J(λ)=1
    综上:

    λ

    1

    ,

    2

    ,

    3

    ,

    4

    =

    {

    1

    ,

    0

    ,

    1

    ,

    0

    }

    lambda_{1,2,3,4} ={1,0,1,0}

    λ1,2,3,4={1,0,1,0}

    {

    W

    =

    i

    =

    1

    N

    λ

    i

    y

    (

    i

    )

    x

    (

    i

    )

    b

    =

    y

    (

    j

    )

    i

    =

    1

    N

    λ

    i

    y

    (

    i

    )

    (

    x

    (

    i

    )

    )

    T

    x

    (

    j

    )

    {

    W

    =

    [

    1

    ,

    1

    ]

    T

    b

    =

    1

    x

    (

    1

    )

    +

    x

    (

    2

    )

    1

    =

    0

    left{begin{matrix} W=sum_{i=1}^{N} lambda_{i} y^{(i)} boldsymbol{x}^{(i)}\ b=y^{(j)}-sum_{i=1}^{N} lambda_{i} y^{(i)}left(x^{(i)}right)^{T} x^{(j)} end{matrix}right. Longrightarrow left{begin{matrix} W = [1,1]^T\ b=-1 end{matrix}right. \Longrightarrow x^{(1)}+x^{(2)} -1 =0

    {W=i=1Nλiy(i)x(i)b=y(j)i=1Nλiy(i)(x(i))Tx(j){W=[1,1]Tb=1x(1)+x(2)1=0

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇
下一篇>>