机器学习-朴素贝叶斯公式过滤垃圾邮件
一、朴素贝叶斯公式
朴素贝叶斯分类(NBC)是以贝叶斯定理为基础并且假设特征条件之间相互独立的方法,先通过已给定的训练集,以特征词之间独立作为前提假设,学习从输入到输出的联合概率分布,再基于学习到的模型,输入x 求出使得后验概率最大的输出y 。
二、优缺点
4、朴素贝叶斯算法的优缺点
优点:
1、朴素贝叶斯模型有稳定的分类效率。
2、对小规模的数据表现很好,能处理多分类任务,适合增量式训练,尤其是数据量超出内存时,可以一批批的去增量训练。
3、对缺失数据不太敏感,算法也比较简单,常用于文本分类。
缺点:
1、需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
2、对输入数据的表达形式很敏感(离散、连续,值极大极小之类的)。
三、拉普拉斯修正
在用朴素贝叶斯分类判断文本类别的时候,要计算多个概率的乘积。如果样本中的某些单词不在词汇表中出现,则连乘后概率为0,无法进行判断。因此我们在计算概率的时要用拉普拉斯修正,公式如下:
四、实现垃圾文件处理
数据集:
代码:
# -*- coding: UTF-8 -*-
import numpy as np
import re
import random
def createVocabList(dataSet):
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document) # 取并集
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec # 返回文档向量
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec # 返回词袋模型
def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix) # 计算训练的文档数目
numWords = len(trainMatrix[0]) # 计算每篇文档的词条数
pAbusive = sum(trainCategory) / float(numTrainDocs) # 文档属于垃圾邮件类的概率
p0Num = np.ones(numWords)
p1Num = np.ones(numWords) # 创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑
p0Denom = 2.0
p1Denom = 2.0 # 分母初始化为2 ,拉普拉斯平滑
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = np.log(p1Num / p1Denom)
p0Vect = np.log(p0Num / p0Denom)
return p0Vect, p1Vect, pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)
p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def textParse(bigString): # 将字符串转换为字符列表
listOfTokens = re.split(r'W*', bigString) # 将特殊符号作为切分标志进行字符串切分,即非字母、非数字
return [tok.lower() for tok in listOfTokens if len(tok) > 2] # 除了单个字母,例如大写的I,其它单词变成小写
def spamTest():
docList = []
classList = []
fullText = []
for i in range(1, 21):
wordList = textParse(open('spam/%d.txt' % i, 'r').read())
docList.append(wordList)
fullText.append(wordList)
classList.append(1) # 标记垃圾邮件,1表示垃圾文件
wordList = textParse(open('ham/%d.txt' % i, 'r').read())
docList.append(wordList)
fullText.append(wordList)
classList.append(0) # 标记正常邮件,0表示正常文件
vocabList = createVocabList(docList)
trainingSet = list(range(40))
testSet = []
for i in range(6): # 从40个邮件中,随机挑选出34个作为训练集,6个做测试集
randIndex = int(random.uniform(0, len(trainingSet)))
testSet.append(trainingSet[randIndex])
del (trainingSet[randIndex])
trainMat = []
trainClasses = []
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses))
errorCount = 0 # 错误分类计数
for docIndex in testSet: # 遍历测试集
wordVector = setOfWords2Vec(vocabList, docList[docIndex]) # 测试集的词集模型
if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]: # 如果分类错误
errorCount += 1 # 错误计数加1
print('错误率:%.2f%%' % (float(errorCount) / len(testSet) * 100))
if __name__ == '__main__':
spamTest()
得出错误率
本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
二维码