cv_常见代码

第一节 Pytorch

一、神经网络分类任务

1、Mnist分类任务:

​ 网络基本构建与训练方法,常用函数解析

​ torch.nn.functional模块

​ nn.Module模块

1) 查看pytorch版本

import torch   
print(torch.__version__)`   

2) 读取Mnist数据集

​ 会自动下载,784是mnist数据集每个样本的像素点个数

from pathlib import Path
import requests
DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"
PATH.mkdir(parents=True, exist_ok=True)
URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"
if not (PATH / FILENAME).exists():
        content = requests.get(URL + FILENAME).content
        (PATH / FILENAME).open("wb").write(content)
import pickle
import gzip
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
        ((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3Iw4CBNL-1670769748412)(C:UsersAdministratorDesktop4.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JEr8Ubf7-1670769748414)(C:UsersAdministratorDesktop5.png)]

注意数据需转换成tensor才能参与后续建模训练

import torch
#map是python内置函数,会根据提供的函数对指定的序列做映射。
x_train, y_train, x_valid, y_valid = map(
    torch.tensor, (x_train, y_train, x_valid, y_valid)
)
n, c = x_train.shape
x_train, x_train.shape, y_train.min(), y_train.max()
print(x_train, y_train)
print(x_train.shape)
print(y_train.min(), y_train.max())
import torch.nn.functional as F
loss_func = F.cross_entropy
def model(xb):
    return xb.mm(weights) + bias
bs = 64
xb = x_train[0:bs]  # a mini-batch from x
yb = y_train[0:bs]
weights = torch.randn([784, 10], dtype = torch.float,  requires_grad = True) 
bs = 64
bias = torch.zeros(10, requires_grad=True)

print(loss_func(model(xb), yb))

torch.nn.functional 很多层和函数在这里都会见到

torch.nn.functional中有很多功能,后续会常用的。那什么时候使用nn.Module,什么时候使用nn.functional呢?一般情况下,如果模型有可学习的参数,最好用nn.Module,其他情况nn.functional相对更简单一些。

3)创建一个model来更简化代码

  • 必须继承nn.Module且在其构造函数中需调用nn.Module的构造函数
  • 无需写反向传播函数,nn.Module能够利用autograd自动实现反向传播
  • Module中的可学习参数可以通过named_parameters()或者parameters()返回迭代器
from torch import nn
class Mnist_NN(nn.Module):
    def __init__(self):  #构造函数
        super().__init__()
        self.hidden1 = nn.Linear(784, 128)
        self.hidden2 = nn.Linear(128, 256)
        self.out  = nn.Linear(256, 10)
        self.dropout = nn.Dropout(0.5)
    def forward(self, x):   #前向传播
        x = F.relu(self.hidden1(x))
        x = F.relu(self.hidden2(x))
        x = self.out(x)
        return x
net = Mnist_NN()
print(net)

4)打印定义好名字里的权重和偏置项

for name, parameter in net.named_parameters():
    print(name, parameter,parameter.size())

使用TensorDataset和DataLoader来简化

from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True)
valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=bs * 2)
def get_data(train_ds, valid_ds, bs):
    return (
        DataLoader(train_ds, batch_size=bs, shuffle=True),  #shuffle:数据是否打乱  训练的时候需要打乱,验证一般不做shuffle
        DataLoader(valid_ds, batch_size=bs * 2),
    )
  • 一般在训练模型时加上model.train(),这样会正常使用Batch Normalization和 Dropout
  • 测试的时候一般选择model.eval(),这样就不会使用Batch Normalization和 Dropout
import numpy as np
#step迭代次数          opt:优化器
def fit(steps, model, loss_func, opt, train_dl, valid_dl):
    for step in range(steps):   #epoch
        model.train()   #更新每一层的权重和偏置
        for xb, yb in train_dl:  #batch
            loss_batch(model, loss_func, xb, yb, opt)
        model.eval()  #验证不需要更新参数
        with torch.no_grad():
            losses, nums = zip(
                *[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl]
            )
            #zip:配对
        val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)
        print('当前step:'+str(step), '验证集损失:'+str(val_loss))
#zip的用法
a = [1,2,3]
b = [4,5,6]
zipped = zip(a,b)  #配对
print(list(zipped))
a2,b2 = zip(*zip(a,b))  #解包
print(a2)
print(b2)
from torch import optim
def get_model():
    model = Mnist_NN()
    return model, optim.Adam(model.parameters(), lr=0.001)
def loss_batch(model, loss_func, xb, yb, opt=None):
    loss = loss_func(model(xb), yb)
    if opt is not None:
        loss.backward()
        opt.step()
        opt.zero_grad()   # torch默认梯度累加,所以执行完梯度后需要清零
    return loss.item(), len(xb)
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)
model, opt = get_model()
fit(25, model, loss_func, opt, train_dl, valid_dl)
correct = 0
total = 0
for xb,yb in valid_dl:
    outputs = model(xb)
    _,predicted = torch.max(outputs.data, 1)     # 1 沿着1这个维度               返回最大值和最大值的位置
    total += yb.size(0)
    correct += (predicted == yb).sum().item()
print('Accuracy of the network on the 10000 test images:%d %%' %(100* correct/ total))
          返回最大值和最大值的位置

total += yb.size(0)
correct += (predicted == yb).sum().item()

print('Accuracy of the network on the 10000 test images:%d %%' %(100* correct/ total))

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇
下一篇>>