OpenCV–拟合平面

项目场景:

在三维空间中,如何通过一组离散的3维坐标来拟合平面空间,使得任意一组空间坐标**(Px, Py, Pz)**在平面方程上。


问题描述

给定n个三维点的坐标,根据这些点坐标由最小二乘法拟合平面。


原因分析:

平面方程一般为Ax+By+Cz+D = 0,为了方便计算这里将平面方程变形为z=Ax+By+C;

像素坐标通过相机内参及外参数矩阵可以得到n个三维点坐标,理想情况下应满足

{

z

0

=

A

x

0

+

B

y

0

+

C

z

1

=

A

x

1

+

B

y

1

+

C

left{begin{array}{c} z_0=A x_0+B y_0+C \ z_1=A x_1+B y_1+C \ cdots end{array}right.

z0=Ax0+By0+Cz1=Ax1+By1+C
但由于测量误差的存在,三维点并不都严格符合在一个平面上,所以上述方程无解,需要用最小二乘法来求解上述方程组。

解决方案:

构建方程目标函数:

J

(

A

,

B

,

C

)

=

i

=

0

n

(

A

x

i

+

B

y

i

+

C

z

i

)

2

J(A, B, C)=sum_{i=0}^nleft(A x_i+B y_i+C-z_iright)^2

J(A,B,C)=i=0n(Axi+Byi+Czi)2
求解A,B,C 使得损失函数J最小,采取最小二乘法,分别对A,B,C求偏导,令其偏导数均为0,如下所示:

{

J

/

A

=

2

i

=

0

n

(

A

x

i

+

B

y

i

+

C

z

i

)

x

i

=

0

J

/

B

=

2

i

=

0

n

(

A

x

i

+

B

y

i

+

C

z

i

)

y

i

=

0

J

/

C

=

2

i

=

0

n

(

A

x

i

+

B

y

i

+

C

z

i

)

=

0

left{begin{array}{c} partial J / partial A=2 * sum_{i=0}^nleft(A x_i+B y_i+C-z_iright) * x_i=0 \ partial J / partial B=2 * sum_{i=0}^nleft(A x_i+B y_i+C-z_iright) * y_i=0 \ partial J / partial C=2 * sum_{i=0}^nleft(A x_i+B y_i+C-z_iright)=0 end{array}right.

J/A=2i=0n(Axi+Byi+Czi)xi=0J/B=2i=0n(Axi+Byi+Czi)yi=0J/C=2i=0n(Axi+Byi+Czi)=0
展开,变形得到:

{

2

(

A

x

i

+

B

y

i

+

C

z

i

)

x

i

=

0

2

(

A

x

i

+

B

y

i

+

C

z

i

)

y

i

=

0

2

(

A

x

i

+

B

y

i

+

C

z

i

)

=

0

left{begin{array}{l} sum 2left(A x_i+B y_i+C-z_iright) x_i=0 \ sum 2left(A x_i+B y_i+C-z_iright) y_i=0 \ sum 2left(A x_i+B y_i+C-z_iright)=0 end{array}right.

2(Axi+Byi+Czi)xi=02(Axi+Byi+Czi)yi=02(Axi+Byi+Czi)=0
其中,A, B, C为变量的线性方程组,写为矩阵形式有:

x

i

2

x

i

y

i

x

i

x

i

y

i

y

i

2

y

i

x

i

y

i

n

A

B

C

=

z

i

x

i

z

i

y

i

z

i

left|begin{array}{ccc} sum mathrm{x}_{mathrm{i}}^2 & sum mathrm{x}_{mathrm{i}} mathrm{y}_{mathrm{i}} & sum mathrm{x}_{mathrm{i}} \ sum mathrm{x}_{mathrm{i}} mathrm{y}_{mathrm{i}} & sum mathrm{y}_{mathrm{i}}^2 & sum mathrm{y}_{mathrm{i}} \ sum mathrm{x}_{mathrm{i}} & sum mathrm{y}_{mathrm{i}} & mathrm{n} end{array}right| cdotleft|begin{array}{c} mathrm{A} \ mathrm{B} \ mathrm{C} end{array}right|=left|begin{array}{c} sum mathrm{z}_{mathrm{i}} mathrm{x}_{mathrm{i}} \ sum mathrm{z}_{mathrm{i}} mathrm{y}_{mathrm{i}} \ sum mathrm{z}_{mathrm{i}} end{array}right|

xi2xiyixixiyiyi2yixiyin

ABC

=

zixiziyizi


构建矩阵方程Ax = b, 其中A为上述方程中左边的参数矩阵方程, x为变量(ABC), b为等式右边的变量。

通过矩阵运算得到

x

=

 A 

1

b

x=text { A }^{-1} * b

x= A 1b, 最终得到参数向量[A B C]。

结果展示:

随机给一组点进行测试:(该点为三维坐标系中Oxy平面附近的一组点,坐标的z值在0附近小范围波动,拟合的平面法向量应该近似等于(0,0,1))。

完整代码如下:

#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

void CaculatefitPlane(std::vector<cv::Point3f> points, std::vector<double> &res)
{
    // 最小二乘法拟合平面 x = A^-1 * B
    // step1 create matrix of A, B, X
    cv::Mat A = cv::Mat::zeros(3, 3, CV_64FC1); // Matrix
    cv::Mat B = cv::Mat::zeros(3, 1, CV_64FC1); // vector
    cv::Mat X = cv::Mat::zeros(3, 1, CV_64FC1); // vector
    // step2 input points
    double xi   = 0;
    double xi2  = 0;
    double xiyi = 0;
    double yi   = 0;
    double yi2  = 0;
    double zi   = 0;
    double zixi = 0;
    double ziyi = 0;
    for (int i = 0; i<points.size(); i++)
    {
		xi2 += (double)points[i].x * (double)points[i].x;
		yi2 += (double)points[i].y * (double)points[i].y;
		xiyi += (double)points[i].x * (double)points[i].y;
		xi += (double)points[i].x;
		yi += (double)points[i].y;
		zixi += (double)points[i].z * (double)points[i].x;
		ziyi += (double)points[i].z * (double)points[i].y;
		zi += (double)points[i].z;
    }
	A.at<double>(0, 0) = xi2;
	A.at<double>(1, 0) = xiyi;
	A.at<double>(2, 0) = xi;
	A.at<double>(0, 1) = xiyi;
	A.at<double>(1, 1) = yi2;
	A.at<double>(2, 1) = yi;
	A.at<double>(0, 2) = xi;
	A.at<double>(1, 2) = yi;
	A.at<double>(2, 2) = points.size();
	B.at<double>(0, 0) = zixi;
	B.at<double>(1, 0) = ziyi;
	B.at<double>(2, 0) = zi;

	// step3 calculate plane
    // Ax+by+cz=D, c = 1
	X = A.inv() * B;

	//A
	res.push_back(X.at<double>(0, 0));
	//B
	res.push_back(X.at<double>(1, 0));
	//Z的系数为1
	res.push_back(1.0);
	//C
	res.push_back(X.at<double>(2, 0));
	return;
}


int main()
{
	std::vector<cv::Point3f> points3d;
	std::vector<double> planeFun;

	points3d.push_back(cv::Point3f(10.1, 20.5, 0.12));
	points3d.push_back(cv::Point3f(15.1, 34.5, 0.1));
	points3d.push_back(cv::Point3f(13.1, 7.5, -0.05));
	points3d.push_back(cv::Point3f(10.1, 25.5, 0.03));
	points3d.push_back(cv::Point3f(14.1, 10.5, 0.1));
	points3d.push_back(cv::Point3f(16.1, 40.5, 0.2));
	points3d.push_back(cv::Point3f(32.1, 10.5, -0.2));

	CaculatefitPlane(points3d, planeFun);
	for (int i = 0; i < planeFun.size();i++)
	{
		std::cout << planeFun[i] << std::endl;
	}
}
	for (int i = 0; i < planeFun.size();i++)
	{
		std::cout << planeFun[i] << std::endl;
	}
}

结果如下:
在这里插入图片描述

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇
下一篇>>