torch.nn.MSELoss扒开看看它

官网介绍

请添加图片描述

Toy

X

,

Y

R

n

×

d

mathbf{X} , mathbf{Y} in mathbf{R}^{ntimes d}

X,YRn×d,假设其中

X

mathbf{X}

X是模型的输入,

Y

mathbf{Y}

Y是真实标签

默认参数

torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')
如果在模型训练中直接使用MSELoss,即

loss = torch.nn.MSELoss()
loss = loss(X, Y)
print(loss)
loss.backward()
print(X.grad)

l

o

s

s

=

1

n

×

d

X

Y

2

loss = frac{1} {ntimes d}||X-Y||^2

loss=n×d1∣∣XY2

X

.

g

r

a

d

=

l

o

s

s

X

=

1

n

×

d

X

Y

2

X

=

2

n

×

d

(

X

Y

)

X.grad = frac{partial loss}{partial X} = frac{partial frac{1} {ntimes d}||X-Y||^2}{partial X}=frac{2}{ntimes d}(mathbf{X}-mathbf{Y})

X.grad=Xloss=Xn×d1∣∣XY2=n×d2(XY) ,范数求导参考1

例如

X

=

[

3

1

4

2

5

3

]

,

Y

=

[

2

2

1

4

6

2

]

l

o

s

s

=

1

3

×

2

3

2

1

2

4

1

2

4

5

6

3

2

2

=

17

/

6

=

2.8333

mathbf{X}=begin{bmatrix} 3 & 1\ 4 & 2\ 5 & 3 end{bmatrix}, mathbf{Y}=begin{bmatrix} 2 & 2 \ 1 & 4 \ 6 & 2 end{bmatrix} Rightarrow loss = frac{1}{3times2}begin{Vmatrix} 3-2 & 1-2\ 4-1 & 2-4\ 5-6 & 3-2 end{Vmatrix}^2=17/6=2.8333

X=

345123

,Y=

216242

loss=3×21

324156122432

2=17/6=2.8333

X

.

g

r

a

d

=

2

3

×

2

[

3

2

1

2

4

1

2

4

5

6

3

2

]

=

1

3

[

1

1

3

2

1

1

]

X.grad = frac{2}{3times2}begin{bmatrix} 3-2 & 1-2\ 4-1 & 2-4\ 5-6 & 3-2 end{bmatrix}= frac{1}{3}begin{bmatrix} 1 & -1\ 3 & -2\ -1 & -1 end{bmatrix}

X.grad=3×22

324156122432

=31

131121


代码实现

import torch
X = torch.tensor([[3, 1], [4, 2], [5, 3]], dtype=torch.float, requires_grad=True)
Y = torch.tensor([[2, 2], [1, 4], [6, 2]], dtype=torch.float)
loss = torch.nn.MSELoss()
loss = loss(X, Y)
loss.backward()
print(loss)
# tensor(2.8333, grad_fn=<MseLossBackward0>)
print(X.grad)
#tensor([[ 0.3333, -0.3333],
#        [ 1.0000, -0.6667],
#        [-0.3333,  0.3333]])

定制参数

torch.nn.MSELoss(reduction='sum')
如果在模型训练中使用MSELoss(reduction='sum'),即

loss = torch.nn.MSELoss(reduction='sum')
loss = loss(X, Y)
print(loss)
loss.backward()
print(X.grad)

l

o

s

s

=

X

Y

2

loss =||X-Y||^2

loss=∣∣XY2

X

.

g

r

a

d

=

l

o

s

s

X

=

X

Y

2

X

=

2

(

X

Y

)

X.grad = frac{partial loss}{partial X} = frac{partial ||X-Y||^2}{partial X}=2(mathbf{X}-mathbf{Y})

X.grad=Xloss=X∣∣XY2=2(XY)

例如

X

=

[

3

1

4

2

5

3

]

,

Y

=

[

2

2

1

4

6

2

]

l

o

s

s

=

3

2

1

2

4

1

2

4

5

6

3

2

2

=

17

mathbf{X}=begin{bmatrix} 3 & 1\ 4 & 2\ 5 & 3 end{bmatrix}, mathbf{Y}=begin{bmatrix} 2 & 2 \ 1 & 4 \ 6 & 2 end{bmatrix} Rightarrow loss = begin{Vmatrix} 3-2 & 1-2\ 4-1 & 2-4\ 5-6 & 3-2 end{Vmatrix}^2=17

X=

345123

,Y=

216242

loss=

324156122432

2=17

X

.

g

r

a

d

=

2

[

3

2

1

2

4

1

2

4

5

6

3

2

]

=

[

2

2

6

4

2

2

]

X.grad = 2begin{bmatrix} 3-2 & 1-2\ 4-1 & 2-4\ 5-6 & 3-2 end{bmatrix}= begin{bmatrix} 2 & -2\ 6 & -4\ -2 & -2 end{bmatrix}

X.grad=2

324156122432

=

262242


代码实现

import torch
X = torch.tensor([[3, 1], [4, 2], [5, 3]], dtype=torch.float, requires_grad=True)
Y = torch.tensor([[2, 2], [1, 4], [6, 2]], dtype=torch.float)
loss = torch.nn.MSELoss(reduction='sum')
loss = loss(X, Y)
loss.backward()
print(loss)
# tensor(17., grad_fn=<MseLossBackward0>)
print(X.grad)
#tensor([[ 2., -2.],
#        [ 6., -4.],
#        [-2.,  2.]])

预测问题-线性回归

为了解释线性回归,我们举一个实际的例子2: 我们希望根据房屋的面积(平方英尺)和房龄(年)来估算房屋价格(美元)。
使用

n

n

n来表示数据集中的样本数。对索引为

i

i

i的样本,其输入表示为

x

(

i

)

=

[

x

1

(

i

)

,

x

2

(

i

)

]

mathbf{x}^{(i)} = [x_1^{(i)}, x_2^{(i)}]^top

x(i)=[x1(i),x2(i)],其对应的标签是

y

(

i

)

y^{(i)}

y(i)

线性假设是指目标(房屋价格)可以表示为特征(面积和房龄)的加权和,如下面的式子:

p

r

i

c

e

=

w

a

r

e

a

a

r

e

a

+

w

a

g

e

a

g

e

+

b

.

mathrm{price} = w_{mathrm{area}} cdot mathrm{area} + w_{mathrm{age}} cdot mathrm{age} + b.

price=wareaarea+wageage+b.

给定一个数据集,我们的目标是寻找模型的权重

w

=

[

w

1

,

w

2

]

mathbf{w}=[w_1, w_2]

w=[w1,w2]和偏置

b

b

b,使得根据模型做出的预测大体符合数据里的真实价格。

这里为了手算简单,我们使用的数据集有6个样本

X

R

6

×

2

,

y

R

6

mathbf{X}inmathbf{R}^{6times 2},mathbf{y}in mathbf{R}^6

XR6×2,yR6

X

=

[

1

2

4

2

8

1

0

1

3

8

1

3

]

y

=

[

1

6

2

7

1

3

]

mathbf{X}=begin{bmatrix} 1 & 2\ 4 & 2\ 8 & 1\ 0 & 1\ 3 & 8\ 1 & 3 end{bmatrix},mathbf{y}=begin{bmatrix} 1 \ 6\ 2\ 7\ 1\ 3 end{bmatrix}

X=

148031221183

y=

162713

麻雀虽小五脏俱全,我们将这6个样本分批训练,即batch_size = 3,同时为了复现上述的线性假设,我们使用nn.Linear(2, 1),即含有三个可学习的参数,分别是模型的权重

w

=

[

w

1

,

w

2

]

mathbf{w}=[w_1, w_2]

w=[w1,w2]和偏置

b

b

b,我们初始化模型参数为

w

0

=

[

1

,

2

]

mathbf{w_0}=[1, 2]

w0=[1,2]和偏置

b

0

b_0

b0=0。这里也使用常用的优化算法stochastic gradient descent,即torch.optim.SGD()。进一步方便手算,我们使用的学习率lr = 0.5。训练之前的代码如下

import numpy as np
import torch
from torch.utils import data

# 为了手算理解内部计算过程,我们手动随便输入数据组成数据集
# 这里的数据集有6个数据样本,每个样本有两个特征
features = torch.tensor([[1, 2], [4, 2], [8, 1], [0, 1], [3, 8], [1, 3]], dtype=torch.float)
labels = torch.tensor([[1], [6], [2], [7], [1], [3]], dtype=torch.float)
# print(features, 'n', labels)

def load_array(data_arrays, batch_size, is_train=True): 
    """构造一个PyTorch数据迭代器"""
    # 布尔值is_train表示是否希望数据迭代器对象在每个迭代周期内打乱数据。
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

# 因为数据集有6个样本,所以这里批大小可以是3,为了理解而服务
batch_size = 3
data_iter = load_array((features, labels), batch_size)

# nn是神经网络的缩写
from torch import nn
# y = x_1*w_1 + x_2*w_2 + b
net = nn.Sequential(nn.Linear(2, 1))

# 手动初始化两个权重和偏置
net[0].weight.data = torch.tensor([[1, 2]], dtype=torch.float)
net[0].bias.data.fill_(0)
# print(net[0].weight.data, 'n', net[0].bias.data)

# 这里使用均方误差,即2范数的平方和,在训练迭代过程中要除以batch_size
loss=torch.nn.MSELoss(reduction='sum')

trainer = torch.optim.SGD(net.parameters(), lr=0.5)

训练过程:
在每个迭代周期里,我们将完整遍历一次数据集(train_data),不停地从中获取一个小批量的输入和相应的标签。对于每一个小批量,我们会进行以下步骤:

  • 通过调用net(X)生成预测并计算损失l(前向传播)。
  • 通过进行反向传播来计算梯度。
  • 通过调用优化器来更新模型参数。

为了更好的衡量训练效果,我们计算每个迭代周期后的损失,并打印它来监控训练过程。

# 训练周期为3
num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
#        print('X: ', X, ',y :', y)
#        print(len(y))
		# len(y)是批量大小,这里是为了让学习率与批量大小解耦 
        l = loss(net(X) ,y)/len(y)
#        print('l:', l)
        trainer.zero_grad()
        l.backward()
#        print('net[0].weight.data: ',net[0].weight.data,'nnet[0].bias.data: ', net[0].bias.data)
#        print('w.grad: ', net[0].weight.grad, 'nb.grad: ', net[0].bias.grad)
        trainer.step()
        
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

每个训练周期中,因为

b

a

t

c

h

_

s

i

z

e

=

3

batch_size=3

batch_size=3,所以一共有

n

/

b

a

t

c

h

_

s

i

z

e

=

6

/

3

n/batch_size=6/3

n/batch_size=6/3个批次,假设

e

p

o

c

h

0

epoch mathbf{0}

epoch0的第一批抽取的3个样本组成的输入特征

X

R

3

×

2

mathbf{X}inmathbf{R}^{3times 2}

XR3×2和标签

y

R

3

mathbf{y}inmathbf{R}^3

yR3,分别(这里因为每批次的样本是从数据集中随机抽取的,所以具体运行因人而异)是

X

=

[

1

3

4

2

1

2

]

,

y

=

[

3

6

1

]

mathbf{X}=begin{bmatrix} 1 & 3\ 4 & 2\ 1 & 2\ end{bmatrix}, mathbf{y}=begin{bmatrix} 3\ 6\ 1\ end{bmatrix}

X=

141322

,y=

361

,则

l

o

s

s

=

1

b

a

t

c

h

_

s

i

z

e

X

w

+

b

y

2

=

1

3

[

1

3

4

2

1

2

]

[

1

2

]

+

[

0

0

0

]

[

3

6

1

]

2

=

12

loss =frac{1}{|mathbf{batch_size}|}||Xmathbf{w}+mathbf{b}-y||^2=frac{1}{3}begin{Vmatrix} begin{bmatrix} 1 & 3\ 4 & 2\ 1 & 2\ end{bmatrix} begin{bmatrix} 1\ 2 end{bmatrix}+ begin{bmatrix} 0\ 0\ 0 end{bmatrix}- begin{bmatrix} 3\ 6\ 1 end{bmatrix} end{Vmatrix}^2=12

loss=batch_size1∣∣Xw+by2=31

141322

[12]+

000

361

2=12

w

.

g

r

a

d

=

l

o

s

s

w

=

1

b

a

t

c

h

_

s

i

z

e

X

w

+

b

y

2

w

=

2

b

a

t

c

h

_

s

i

z

e

X

T

(

X

w

+

b

y

)

=

2

3

[

1

3

4

2

1

2

]

T

(

[

1

3

4

2

1

2

]

[

1

2

]

+

[

0

0

0

]

[

3

6

1

]

)

=

[

32

3

16

]

mathbf{w}.grad= frac{partial loss}{partial mathbf{w}} = frac{partial frac{1}{|mathbf{batch_size}|}||Xmathbf{w}+mathbf{b}-y||^2}{partial mathbf{w}}=frac{2}{|mathbf{batch_size}|}X^{T}(Xmathbf{w}+mathbf{b}-y)=frac{2}{3}begin{bmatrix} 1 & 3\ 4 & 2\ 1 & 2\ end{bmatrix} ^{T}(begin{bmatrix} 1 & 3\ 4 & 2\ 1 & 2\ end{bmatrix} begin{bmatrix} 1\ 2 end{bmatrix}+begin{bmatrix} 0\ 0\ 0 end{bmatrix}-begin{bmatrix} 3\ 6\ 1 end{bmatrix})=begin{bmatrix} mathbf{frac{32}{3}}\ mathbf{16} end{bmatrix}

w.grad=wloss=wbatch_size1∣∣Xw+by2=batch_size2XT(Xw+by)=32

141322

T(

141322

[12]+

000

361

)=[33216](这里偏置

b

mathbf{b}

b使用了torch.tensor的广播机制3)。

值得注意的是

l

o

s

s

=

1

b

a

t

c

h

_

s

i

z

e

X

w

+

b

y

2

loss =frac{1}{|mathbf{batch_size}|}||Xmathbf{w}+mathbf{b}-y||^2

loss=batch_size1∣∣Xw+by2,这种形式是为了处理像这种多个维度的向量矩阵,那么对于标量

b

mathbf{b}

b而言,

l

o

s

s

=

1

b

a

t

c

h

_

s

i

z

e

X

w

+

b

y

2

=

1

b

a

t

c

h

_

s

i

z

e

i

=

1

b

a

t

c

h

_

s

i

z

e

(

x

1

w

1

+

x

2

w

2

+

b

y

)

2

=

1

3

[

(

1

1

+

3

2

+

0

3

)

2

+

(

4

1

+

2

2

+

0

6

)

2

+

(

1

1

+

2

2

+

0

1

)

2

]

=

12

loss =frac{1}{|mathbf{batch_size}|}||Xmathbf{w}+mathbf{b}-y||^2=frac{1}{|mathbf{batch_size}|}sum_{i=1}^{|batch_size|}(x_1w_1+x_2w_2+mathbf{b}-y)^2=frac{1}{3}mathbf{[}(1*1+3*2+mathbf{0}-3)^2+(4*1+2*2+mathbf{0}-6)^2+(1*1+2*2+mathbf{0}-1)^2]=12

loss=batch_size1∣∣Xw+by2=batch_size1i=1batch_size(x1w1+x2w2+by)2=31[(11+32+03)2+(41+22+06)2+(11+22+01)2]=12,所以

b

.

g

r

a

d

=

l

o

s

s

b

=

1

b

a

t

c

h

_

s

i

z

e

i

=

1

b

a

t

c

h

_

s

i

z

e

(

x

1

w

1

+

x

2

w

2

+

b

y

)

2

b

=

2

b

a

t

c

h

_

s

i

z

e

i

=

1

b

a

t

c

h

_

s

i

z

e

(

x

1

w

1

+

x

2

w

2

+

b

y

)

=

2

3

[

(

1

1

+

3

2

+

0

3

)

+

(

4

1

+

2

2

+

0

6

)

+

(

1

1

+

2

2

+

0

1

)

]

=

20

3

=

6.6667

mathbf{b}.grad= frac{partial loss}{partial mathbf{b}} = frac{partial frac{1}{|mathbf{batch_size}|}sum_{i=1}^{|batch_size|}(x_1w_1+x_2w_2+mathbf{b}-y)^2}{partial mathbf{b}}=frac{2}{|mathbf{batch_size}|}sum_{i=1}^{|batch_size|}(x_1w_1+x_2w_2+mathbf{b}-y)=frac{2}{3}mathbf{[}(1*1+3*2+mathbf{0}-3)+(4*1+2*2+mathbf{0}-6)+(1*1+2*2+mathbf{0}-1)]=frac{20}{3}=mathbf{6.6667}

b.grad=bloss=bbatch_size1i=1batch_size(x1w1+x2w2+by)2=batch_size2i=1batch_size(x1w1+x2w2+by)=32[(11+32+03)+(41+22+06)+(11+22+01)]=320=6.6667

运行截图:
请添加图片描述
同时可学习的参数

w

mathbf{w}

w

b

mathbf{b}

b通过SGD得到更新,即

w

1

=

w

0

η

l

o

s

s

w

=

w

0

η

w

.

g

r

a

d

=

[

1

2

]

0.5

[

10.6667

16

]

=

[

4.3333

6

]

mathbf{w_1}=mathbf{w_0}-etafrac{partial loss}{partial mathbf{w}}=mathbf{w_0}-etamathbf{w}.grad=begin{bmatrix} 1\ 2 end{bmatrix}-0.5*begin{bmatrix} 10.6667\ 16 end{bmatrix}=begin{bmatrix} -4.3333\ -6 end{bmatrix}

w1=w0ηwloss=w0ηw.grad=[12]0.5[10.666716]=[4.33336]和偏置

b

1

=

b

0

η

l

o

s

s

b

=

b

0

η

b

.

g

r

a

d

=

0

0.5

6.6667

=

3.3333

mathbf{b_1}=mathbf{b_0}-etafrac{partial loss}{partial mathbf{b}}=mathbf{b_0}-etamathbf{b}.grad=0-0.5*6.6667=-3.3333

b1=b0ηbloss=b0ηb.grad=00.56.6667=3.3333。后面的更新类似迭代即可。


  1. http://matrixcookbook.com ↩︎

  2. https://zh.d2l.ai/chapter_linear-networks/linear-regression-concise.html ↩︎

  3. https://zh.d2l.ai/chapter_linear-networks/linear-regression-scratch.html ↩︎

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇
下一篇>>