基础的强化学习(RL)算法及代码详细demo

  • gym环境: https://www.gymlibrary.dev/

  • 环境安装:

    • 我的版本:

      package module
      gym 0.24.0
      ale-py 0.7.5
      torch 1.11.0
      torchvision 0.12.0
      tensorboard 2.6.0
    • 安装方法:

      pip install -i https://pypi.tuna.tsinghua.edu.cn/simple gym
      pip install --no-index -f https://github.com/Kojoley/atari-py/releases atari_py
      pip install gym[atari]
      pip uninstall ale-py
      pip install ale-py
      

      安装box2d: 可能会遇到building wheel failed for box2d

      在 https://www.lfd.uci.edu/~gohlke/pythonlibs/ 下载相应的 PyBox2D的whl文件
      然后在命令行:
      pip install D:FILESPYTHON_PROJECTSBox2D-2.3.10-cp37-cp37m-win_amd64.whl
      

一、Sarsa (悬崖问题)

1.1 CliffWalking-v0环境介绍

在一个4x12的网格中,智能体以网格的左下角位置为起点,以网格的下角位置为终点,目标是移动智能体到达终点位置,智能体每次可以在上、下、左、右这4个方向中移动一步,每移动一步会得到 -1 的奖励。

在这里插入图片描述

  • 如果智能体“掉入悬崖” ,会立即回到起点位置,并得到-100单位的奖励

  • 当智能体移动到终点时,该回合结束,该回合总奖励为各步奖励之和

import gym

env = gym.make("CliffWalking-v0")
observation = env.reset() 
env.render()

在这里插入图片描述

  • 从起点到终点最少需要13步,每步得到-1的reward。我们的目标也是要通过RL训练出一个模型,使得该模型能在测试中一个episode的reward能够接近于-13左右。

1.2 Sarsa算法流程

算法参数: 步长

α

<

1

alpha<1

α<1 极小值

ϵ

epsilon

ϵ (两个超参数)

对于所有

Q

(

s

,

a

)

Q(s,a)

Q(s,a)随机初始化,终点处$ Q(s_{end},a) = 0$

for (each trajectory):

初始化

S

S

S

a

t

=

ϵ

g

r

e

e

d

y

(

s

t

)

a_t = epsilon -greedy quad(s_t)

at=ϵgreedy(st)

for (each step):

执行

a

t

a_t

at,得到

(

r

t

+

1

,

s

t

+

1

)

(r_{t+1},s_{t+1})

(rt+1,st+1)

a

t

+

1

=

ϵ

g

r

e

e

d

y

(

s

t

+

1

)

a_{t+1} = epsilon -greedy quad(s_{t+1})

at+1=ϵgreedy(st+1)

Q

(

s

t

,

a

t

)

=

Q

(

s

t

,

a

t

)

+

α

[

r

t

+

1

+

γ

Q

(

s

t

+

1

,

a

t

+

1

)

Q

(

s

t

,

a

t

)

]

Q(s_{t},a_{t})=Q(s_{t},a_{t})+alpha[r_{t+1}+gamma Q(s_{t+1},a_{t+1})-Q(s_{t},a_{t})]

Q(st,at)=Q(st,at)+α[rt+1+γQ(st+1,at+1)Q(st,at)]

s

t

=

s

t

+

1

,

a

t

=

a

t

+

1

s_t = s_{t+1},a_t = a_{t+1}

st=st+1,at=at+1

1.3 具体代码

import numpy as np
import gym
import time

class SarsaAgent:
    def __init__(self, obs_n, act_n, learning_rate=0.01, gamma=0.9, e_greed=0.1):
        self.act_n = act_n
        self.lr = learning_rate
        self.gamma = gamma
        self.epsilon = e_greed
        self.Q = np.zeros((obs_n, act_n))
    # e_greed:根据s_t,选择a_t
    def sample(self,obs):
        if np.random.uniform(0,1) < (1.0 - self.epsilon):
            action = self.predict(obs)
        else:
            action = np.random.choice(self.act_n) # 0,1,2,3
        return action
    # a_t = argmax Q(s)
    def predict(self, obs):
        Q_list = self.Q[obs, :] #当前s下所有a对应的Q值
        maxQ = np.max(Q_list)
        action_list = np.where(Q_list == maxQ)[0] # action_list=所有=Qmax的索引
        action = np.random.choice(action_list)
        return action
    
    def learn(self, obs, action, reward, next_obs, next_action, done): # (S,A,R,S,A)
        '''
        done: episode是否结束
        '''
        predict_Q = self.Q[obs,action]
        if done:
            target_Q = reward
        else:
            target_Q = reward + self.gamma * self.Q[next_obs,next_action]
        # 更新Q表格
        self.Q[obs,action] += self.lr * (target_Q - predict_Q)
    def save(self):
        npy_file = './q-table.npy'
        np.save(npy_file, self.Q)
        print(npy_file + ' saved.')
    def load(self, npy_file='./q_table.npy'):
        self.Q = np.load(npy_file)
        print(npy_file + ' loaded.')

def run_episode(env, agent, render=False):
    total_steps = 0 # 记录当前episode走了多少step
    total_reward = 0 
    obs = env.reset()
    action = agent.sample(obs)
    while True:
        next_obs, reward, done, _ = env.step(action)
        next_action = agent.sample(next_obs)
        agent.learn(obs, action, reward, next_obs, next_action, done)
        action = next_action
        obs = next_obs
        total_reward += reward
        total_steps += 1
        if render:
            env.render()
            time.sleep(0.)
        if done:
            break
    return total_reward, total_steps

def test_episode(env, agent): 
    total_steps = 0 # 记录当前episode走了多少step
    total_reward = 0 
    obs = env.reset()
    while True:
        action = agent.predict(obs)
        next_obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps += 1
        obs = next_obs
        time.sleep(0.5)
        env.render()
        if done:
            break
    return total_reward, total_steps

def main():
    env = gym.make("CliffWalking-v0")
    agent = SarsaAgent(obs_n=env.observation_space.n, 
                       act_n=env.action_space.n,
                       learning_rate=0.025, gamma=0.9, e_greed=0.1)
    for episode in range(1000):
        total_reward, total_steps = run_episode(env, agent, False)
        print('Episode %s: total_steps = %s , total_reward = %.1f' % (episode, total_steps, total_reward))
    test_episode(env, agent)

main()

1.4 演示效果

训练了1000个episode,

r

e

w

a

r

d

=

23

reward=-23

reward=23

在这里插入图片描述

二、Q-Learning (悬崖问题)

2.1 CliffWalking-v0环境介绍

(介绍见1.1)

2.2 Q-Learning算法流程

(Q-Learning其实真正执行的策略和Sarsa是一样的,只不过学习的策略是保守的最优策略)

算法参数: 步长

α

<

1

alpha<1

α<1 极小值

ϵ

epsilon

ϵ (两个超参数)

对于所有

Q

(

s

,

a

)

Q(s,a)

Q(s,a)随机初始化,终点处

Q

(

s

e

n

d

,

a

)

=

0

Q(s_{end},a) = 0

Q(send,a)=0
for (each trajectory):

初始化

S

S

S

for (each step):

a

t

=

ϵ

g

r

e

e

d

y

(

s

t

)

a_{t} = epsilon -greedy quad(s_{t})

at=ϵgreedy(st)(行为策略)

执行

a

t

a_t

at,得到

(

r

t

+

1

,

s

t

+

1

)

(r_{t+1},s_{t+1})

(rt+1,st+1)

Q

(

s

t

,

a

t

)

=

Q

(

s

t

,

a

t

)

+

α

[

r

t

+

1

+

γ

m

a

x

a

Q

(

s

t

+

1

,

a

)

Q

(

s

t

,

a

t

)

]

Q(s_{t},a_{t})=Q(s_{t},a_{t})+alpha[r_{t+1}+gamma underset{a}{max}Q(s_{t+1},a)-Q(s_{t},a_{t})]

Q(st,at)=Q(st,at)+α[rt+1+γamaxQ(st+1,a)Q(st,at)]

s

t

=

s

t

+

1

s_t = s_{t+1}

st=st+1

2.3 具体代码

import numpy as np
import gym
import time

class QLearningAgent:
    def __init__(self, obs_n, act_n, learning_rate=1e-2, gamma=0.9, e_greed=0.1):
        self.act_n = act_n  # 动作维度,有几个动作可选
        self.lr = learning_rate  # 学习率
        self.gamma = gamma  # reward的衰减率
        self.epsilon = e_greed  # 按一定概率随机选动作
        self.Q = np.zeros((obs_n, act_n))
    def sample(self, obs):
        if np.random.uniform(0, 1) < (1.0 - self.epsilon):  # 根据table的Q值选动作
            action = self.predict(obs)
        else:
            action = np.random.choice(self.act_n)  # 有一定概率随机探索选取一个动作
        return action
    # 根据输入观察值,预测输出的动作值
    def predict(self, obs):
        Q_list = self.Q[obs, :]
        maxQ = np.max(Q_list)
        action_list = np.where(Q_list == maxQ)[0]  # maxQ可能对应多个action
        action = np.random.choice(action_list)
        return action
    def learn(self, obs, action, reward, next_obs, done): #(S,A,R,S)
        predict_Q = self.Q[obs, action]
        if done:
            target_Q = reward
        else:
            target_Q = reward + self.gamma * np.max(self.Q[next_obs,:])
        self.Q[obs, action] += self.lr * (target_Q - predict_Q)
    def save(self):
        npy_file = './q-table.npy'
        np.save(npy_file, self.Q)
        print(npy_file + ' saved.')
    def load(self, npy_file='./q_table.npy'):
        self.Q = np.load(npy_file)
        print(npy_file + ' loaded.')
    
def run_episode(env, agent, render=False):
    # 其实真正执行的策略和Sarsa是一样的,只不过学习的策略是保守的最优策略
    total_steps = 0
    total_reward = 0
    obs = env.reset()

    while True:
        action = agent.sample(obs)
        next_obs, reward, done, _ = env.step(action)
        agent.learn(obs, action, reward, next_obs, done)
        obs = next_obs

        total_reward += reward
        total_steps += 1
        if render:
            env.render()
        if done:
            break
    return total_reward, total_steps

def test_episode(env, agent):
    total_reward = 0
    obs = env.reset()
    while True:
        action = agent.predict(obs)  # greedy
        next_obs, reward, done, _ = env.step(action)
        total_reward += reward
        obs = next_obs
        time.sleep(0.5)
        env.render()
        if done:
            break
    return total_reward

def main():
    env = gym.make("CliffWalking-v0")  # 0 up, 1 right, 2 down, 3 left

    # 创建一个agent实例,输入超参数
    agent = QLearningAgent(
        obs_n=env.observation_space.n,
        act_n=env.action_space.n,
        learning_rate=0.1,
        gamma=0.9,
        e_greed=0.1)

    # 训练500个episode,打印每个episode的分数
    for episode in range(500):
        ep_reward, ep_steps = run_episode(env, agent, False)
        print('Episode %s: steps = %s , reward = %.1f' % (episode, ep_steps, ep_reward))

    # 全部训练结束,查看算法效果
    test_reward = test_episode(env, agent)
    print('test reward = %.1f' % (test_reward))

main()

2.4 演示效果

在这里插入图片描述

三、PG 策略梯度 (倒立摆)

3.1 CartPole-v1环境介绍

(Cart Pole - Gym Documentation (gymlibrary.dev))

一根杆通过一个未驱动的关节连接到一辆小车上,小车沿着一条无摩擦的轨道移动。将钟摆垂直放置在推车上,目标是通过在推车上施加左右方向的力来平衡杆。

倒立摆:
在这里插入图片描述

在这里插入图片描述

  • obs: (1,4)

    Num Observation Min Max
    0 Cart Position0 -4.8 4.8
    1 Cart Velocity -Inf Inf
    2 Pole Angle -0.418 rad 0.418 rad
    3 Pole Angular Velocity -Inf Inf
  • action: (1,2)

    动作空间是离散的:

    Num Action
    0 向左推车
    1 向右推车
  • reward

    每活着经过一个时间步,奖励 + 1。

  • 终止条件:

    • ① Pole Angle > 12°
    • ② |水平位置|>2.4’
    • ③ 超过500步

3.2 PG算法流程(REINFORCE)

输入: 可微调的策略参数

π

(

a

s

,

θ

)

pi(a|s,theta)

π(as,θ)

算法参数: 步长大小

α

>

0

alpha>0

α>0

初始化的策略参数

θ

theta

θ

循环(each trajectory):

根据

π

(

,

θ

)

pi(cdot|cdot,theta)

π(,θ),生成

S

0

,

A

0

,

R

1

,

.

.

.

S

T

1

,

A

T

1

,

R

T

S_0,A_0,R_1,...S_{T-1},A_{T-1},R_{T}

S0,A0,R1,...ST1,AT1,RT

对一个回合的每一步进行循环,

t

=

0

,

1

,

.

.

.

,

T

1

t=0,1,...,T-1

t=0,1,...,T1

G

=

k

=

t

+

1

T

γ

k

t

1

R

k

G = sum_{k=t+1}^{T} gamma^{k-t-1} R_k

G=k=t+1Tγkt1Rk

θ

=

θ

+

α

γ

t

G

l

n

[

π

(

a

t

s

t

,

θ

)

]

theta = theta + alpha gamma^t G bigtriangledown ln[pi(a_t|s_t,theta)]

θ=θ+αγtGln[π(atst,θ)]

3.3 具体代码

import torch
import gym
import numpy as np
import torch.nn as nn
from torch.nn import Linear
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
import time

lr = 0.002
gamma = 0.8

class PGPolicy(nn.Module):
    def __init__(self, input_size=4, hidden_size=128, output_size=2):
        super(PGPolicy, self).__init__()
        self.fc1 = Linear(input_size, hidden_size)
        self.fc2 = Linear(hidden_size, output_size)
        self.dropout = nn.Dropout(p=0.6)
        
        self.saved_log_probs = []# 记录每一步的动作概率
        self.rewards = []#记录每一步的r
    def forward(self, x):
        x = self.fc1(x)
        x = self.dropout(x)
        x = F.relu(x)
        x = self.fc2(x)
        out = F.softmax(x, dim=1)
        return out

def choose_action(state, policy):
    state = torch.from_numpy(state).float().unsqueeze(0) # 在索引0对应位置增加一个维度
    probs = policy(state) 
    m = Categorical(probs) #创建以参数probs为标准的类别分布,之后的m.sampe就会按此概率选择动作
    action = m.sample()
    policy.saved_log_probs.append(m.log_prob(action))
    return action.item()#返回的就是int

def learn(policy, optimizer):
    R = 0
    policy_loss = []
    returns = []
    for r in policy.rewards[::-1]:
        R = r + gamma*R
        returns.insert(0,R)#从头部插入,即反着插入
    returns = torch.tensor(returns)
    # 归一化(均值方差),eps是一个非常小的数,避免除数为0
    eps = np.finfo(np.float64).eps.item()
    returns = (returns - returns.mean()) / (returns.std() + eps)  
    for log_prob, R in zip(policy.saved_log_probs, returns):
        policy_loss.append(-log_prob*R)

    optimizer.zero_grad()
    policy_loss = torch.cat(policy_loss).sum()
    policy_loss.backward()
    optimizer.step()

    del policy.rewards[:]  # 清空数据
    del policy.saved_log_probs[:]

def train(episode_num):
    env = gym.make('CartPole-v1')
    env.seed(1)
    torch.manual_seed(1)
    policy = PGPolicy()
    # policy.load_state_dict(torch.load('save_model.pt'))  # 模型导入
    optimizer = optim.Adam(policy.parameters(), lr)
    average_r = 0

    for i in range(1, episode_num+1): #采这么多轨迹
        obs = env.reset()
        ep_r = 0
        for t in range(1, 10000):
            action = choose_action(obs, policy)
            obs, reward, done, _ = env.step(action)
            policy.rewards.append(reward)
            ep_r += reward
            if done:
                break
        average_r = 0.05 * ep_r + (1-0.05) * average_r
        learn(policy, optimizer)
        if i % 10 == 0:
                print('Episode {}tLast reward: {:.2f}tAverage reward: {:.2f}'.format(i, ep_r, average_r))

    torch.save(policy.state_dict(), 'PGPolicy.pt')
def test():
    env = gym.make('CartPole-v1')
    env.seed(1)
    torch.manual_seed(1)
    policy = PGPolicy()
    policy.load_state_dict(torch.load('PGPolicy.pt'))  # 模型导入
    average_r = 0
    with torch.no_grad():
        obs = env.reset()
        ep_r = 0
        for t in range(1, 10000):
            action = choose_action(obs, policy)
            obs, reward, done, _ = env.step(action)
            policy.rewards.append(reward)
            env.render()
            time.sleep(0.1)
            ep_r += reward
            if done:
                break

train(1000)

#  test()

3.4 演示效果

训练过程:

在这里插入图片描述

在这里插入图片描述

四、PPO (飞船降落)

4.1 LunarLander-v2环境介绍

(该环境需要安装box2d)

https://www.gymlibrary.dev/environments/box2d/lunar_lander/?highlight=lunarlander

在这里插入图片描述

  • observation (1,8)

    Num Observation
    0 x
    1 y
    2

    V

    x

    V_x

    Vx

    3

    V

    y

    V_y

    Vy

    4

    a

    n

    g

    l

    e

    angle

    angle

    5

    a

    n

    g

    u

    l

    a

    r

    v

    e

    l

    o

    c

    i

    t

    y

    angular quad velocity

    angularvelocity

    6 左腿是否触地(bool)
    7 右腿是否触地(bool)
  • action (1,4)

    Num Action
    0 啥也不干
    1 左侧点火
    2 下面(主发动机)点火
    3 右侧点火
  • reward

    从屏幕顶部移动到着陆台的奖励约为100-140分。如果着陆器没降落到陆台,它将失去奖励。如果着陆器坠毁,它将获得额外的-100分。如果它成功降落,它将获得额外的+100分。接地的每个支腿为+10点。每架主机点火-0.3分。侧面发动机每帧点火-0.03分。解决的是200分。

  • 终止条件

    • 飞船与月球接触
    • 飞船|x|>1

4.2 PPO-Clip算法流程

初始化策略函数的参数

θ

0

theta_0

θ0, 初始化价值函数的参数

ϕ

0

phi_0

ϕ0

for k = 0,1,2,…

基于

π

(

θ

k

)

pi(theta_k)

π(θk)来采集轨迹组

D

k

=

τ

k

D_k={tau_k}

Dk=τk

计算

R

t

R_t

Rt

计算

A

t

A_t

At

更新策略:

θ

k

+

1

=

a

r

g

m

a

x

θ

1

D

k

T

τ

t

m

i

n

(

π

θ

(

a

t

s

t

)

π

θ

(

a

t

s

t

)

A

(

s

t

,

a

t

)

,

g

(

ϵ

,

A

(

s

t

,

a

t

)

)

)

theta_{k+1}=underset{theta}{argmax}frac{1}{|D_k|T}underset{tau }{sum}underset{t }{sum} min(frac{pi_theta(a_t|s_t)}{pi_{theta^{'}}(a_t|s_t)}A(s_t,a_t),quad g(epsilon,A(s_t,a_t)))

θk+1=θargmaxDkT1τtmin(πθ(atst)πθ(atst)A(st,at),g(ϵ,A(st,at)))

更新价值函数:

ϕ

k

+

1

=

a

r

g

m

i

n

ϕ

1

D

k

T

τ

t

(

V

(

s

t

)

R

)

2

phi_{k+1}=underset{phi}{argmin}frac{1}{|D_k|T}underset{tau }{sum}underset{t }{sum} (V(s_t)-R)^2

ϕk+1=ϕargminDkT1τt(V(st)R)2

4.3 具体代码

import torch
import torch.nn as nn
from torch.distributions import Categorical
import gym

device = 'cpu'

class Memory:
    def __init__(self):
        self.actions = []
        self.states = []
        self.logprobs = []
        self.rewards = []
        self.is_terminals = []
    def clear_memory(self):
        del self.actions[:]
        del self.states[:]
        del self.logprobs[:]
        del self.rewards[:]
        del self.is_terminals[:]

class ActorCritic(nn.Module):
    def __init__(self, state_dim, action_dim, n_latent_var):
        super(ActorCritic, self).__init__()
        # actor
        self.action_layer = nn.Sequential(
                                nn.Linear(state_dim, n_latent_var),
                                nn.Tanh(),
                                nn.Linear(n_latent_var, n_latent_var),
                                nn.Tanh(),
                                nn.Linear(n_latent_var, action_dim),
                                nn.Softmax(dim=-1)
                                )
        # critic
        self.value_layer = nn.Sequential(
                nn.Linear(state_dim, n_latent_var),
                nn.Tanh(),
                nn.Linear(n_latent_var, n_latent_var),
                nn.Tanh(),
                nn.Linear(n_latent_var, 1)
                )
    
    def forward(self):
        # 如果这个方法没有被子类重写,但是调用了,就会报错
        raise NotImplementedError 
    def act(self, state, memory):
        state = torch.from_numpy(state).float().to(device) 
        action_probs = self.action_layer(state)
        dist = Categorical(action_probs)
        action = dist.sample()
        
        memory.states.append(state)
        memory.actions.append(action)
        memory.logprobs.append(dist.log_prob(action))
        
        return action.item()
    
    def evaluate(self, state, action):
        action_probs = self.action_layer(state)
        dist = Categorical(action_probs)
        
        action_logprobs = dist.log_prob(action)
        dist_entropy = dist.entropy()
        
        state_value = self.value_layer(state)
        
        return action_logprobs, torch.squeeze(state_value), dist_entropy

class PPO:
    def __init__(self, state_dim, action_dim, n_latent_var, lr, betas, gamma, K_epochs, eps_clip):
        self.lr = lr
        self.betas = betas
        self.gamma = gamma
        self.eps_clip = eps_clip
        self.K_epochs = K_epochs
        
        self.policy = ActorCritic(state_dim, action_dim, n_latent_var).to(device)
        self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=lr, betas=betas)
        self.policy_old = ActorCritic(state_dim, action_dim, n_latent_var).to(device)
        self.policy_old.load_state_dict(self.policy.state_dict())
        
        self.MseLoss = nn.MSELoss()
    
    def update(self, memory):   
        # Monte Carlo estimate of state rewards:
        rewards = []
        discounted_reward = 0
        for reward, is_terminal in zip(reversed(memory.rewards), reversed(memory.is_terminals)):
            if is_terminal:
                discounted_reward = 0
            discounted_reward = reward + (self.gamma * discounted_reward)
            rewards.insert(0, discounted_reward)
        
        # Normalizing the rewards:
        rewards = torch.tensor(rewards).to(device).to(torch.float32)
        rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-5)
        
        # convert list to tensor
        old_states = torch.stack(memory.states).to(device).detach().to(torch.float32)
        old_actions = torch.stack(memory.actions).to(device).detach().to(torch.float32)
        old_logprobs = torch.stack(memory.logprobs).to(device).detach().to(torch.float32)
        
        # Optimize policy for K epochs:
        for _ in range(self.K_epochs):
            # Evaluating old actions and values :
            logprobs, state_values, dist_entropy = self.policy.evaluate(old_states, old_actions)
            # Finding the ratio (pi_theta / pi_theta__old):
            ratios = torch.exp(logprobs - old_logprobs.detach())
                
            # Finding Surrogate Loss:
            advantages = rewards - state_values.detach()
            surr1 = ratios * advantages
            surr2 = torch.clamp(ratios, 1-self.eps_clip, 1+self.eps_clip) * advantages
            loss = -torch.min(surr1, surr2) + 0.5*self.MseLoss(state_values, rewards) - 0.01*dist_entropy
            loss =loss.to(torch.float32)
            # take gradient step
            self.optimizer.zero_grad()
            loss.mean().backward()
            self.optimizer.step()
        
        # Copy new weights into old policy:
        self.policy_old.load_state_dict(self.policy.state_dict())

def main():
    ############## Hyperparameters ##############
    env_name = 'LunarLander-v2'# "LunarLander-v2"
    # creating environment
    env = gym.make(env_name)
    env = env.unwrapped
    state_dim = env.observation_space.shape[0]
    action_dim =  4
    render = False
    solved_reward = 200         # stop training if avg_reward > solved_reward
    log_interval = 20           # print avg reward in the interval
    max_episodes = 5000        # max training episodes
    max_timesteps = 1000         # max timesteps in one episode
    n_latent_var = 64           # number of variables in hidden layer
    update_timestep = 2000      # update policy every n timesteps
    lr = 0.002
    betas = (0.9, 0.999)
    gamma = 0.99                # discount factor
    K_epochs = 4                # update policy using 1 trajectory for K epochs
    eps_clip = 0.2              # clip parameter for PPO
    random_seed = 123
    #############################################
    
    if random_seed:
        torch.manual_seed(random_seed)
        env.seed(random_seed)
    
    memory = Memory()
    ppo = PPO(state_dim, action_dim, n_latent_var, lr, betas, gamma, K_epochs, eps_clip)

    print(lr,betas)
    
    # logging variables
    running_reward = 0
    avg_length = 0
    timestep = 0
    
    # training loop
    for i_episode in range(1, max_episodes+1):
        state = env.reset()
        for t in range(max_timesteps):
            timestep += 1
            
            # Running policy_old:
            action = ppo.policy_old.act(state, memory)
            state, reward, done, _ = env.step(action)
            
            # Saving reward and is_terminal:
            memory.rewards.append(reward)
            memory.is_terminals.append(done)
            # update if its time
            if timestep % update_timestep == 0:
                ppo.update(memory)
                memory.clear_memory()
                timestep = 0
            
            running_reward += reward
            if render:
                env.render()
            if done:
                break
                
        avg_length += t
        
        # stop training if avg_reward > solved_reward
        if running_reward > (log_interval*solved_reward):
            print("########## Solved! ##########")
            torch.save(ppo.policy.state_dict(), './PPO_{}_{}.pth'.format(env_name,lr))
            break
            
        # logging
        if i_episode % log_interval == 0:
            avg_length = int(avg_length/log_interval)
            running_reward = int((running_reward/log_interval))
            print('Episode {} t avg length: {} t reward: {}'.format(i_episode, avg_length, running_reward))
            running_reward = 0
            avg_length = 0
        if i_episode % 2000 == 0:
            torch.save(ppo.policy.state_dict(), './PPO_{}_{}.pth'.format(env_name,lr))

def test():
    ############## Hyperparameters ##############
    env_name = "LunarLander-v2"
    # creating environment
    env = gym.make(env_name)
    state_dim = env.observation_space.shape[0]
    action_dim = 4
    render = False
    max_timesteps = 500
    n_latent_var = 64           # number of variables in hidden layer
    lr = 0.0002
    betas = (0.9, 0.999)
    gamma = 0.99                # discount factor
    K_epochs = 4                # update policy for K epochs
    eps_clip = 0.2              # clip parameter for PPO
    #############################################

    n_episodes = 3
    max_timesteps = 300
    render = True
    save_gif = False

    filename = "PPO_{}_0.002.pth".format(env_name)
    directory = "./"
    
    memory = Memory()
    ppo = PPO(state_dim, action_dim, n_latent_var, lr, betas, gamma, K_epochs, eps_clip)
    
    ppo.policy_old.load_state_dict(torch.load(directory+filename))
    
    for ep in range(1, n_episodes+1):
        ep_reward = 0
        state = env.reset()
        for t in range(max_timesteps):
            action = ppo.policy_old.act(state, memory)
            state, reward, done, _ = env.step(action)
            ep_reward += reward
            if render:
                env.render()
            if done:
                break
            
        print('Episode: {}tReward: {}'.format(ep, int(ep_reward)))
        ep_reward = 0
        env.close()
         
if __name__ == '__main__':
    main()
    # test()

4.4 演示效果

在这里插入图片描述
在这里插入图片描述

五、DQN (打砖块)

5.1 Breakout-v0环境介绍

Breakout - Gym Documentation (gymlibrary.dev)

在这里插入图片描述

  • observation (210,160,3)

在这里插入图片描述

  • action (1,4)

    Num Action
    0 NOOP
    1 FIRE
    2 RIGHT
    3 LEFT
  • reward

    在这里插入图片描述

5.2 DQN算法流程

(带有经验回放池的DQN)

初始化经验回放池

D

D

D(容量为

N

N

N)

随机初始化 动作-价值 函数

Q

Q

Q

for (each episode)

初始化序列

s

1

=

[

x

1

]

s_1=[x_1]

s1=[x1],预处理

ϕ

1

=

ϕ

(

s

1

)

phi_1=phi(s_1)

ϕ1=ϕ(s1)

for (each step)

a

t

=

m

a

x

a

Q

(

ϕ

(

s

t

)

,

a

:

θ

)

a_t=underset{a}{max}Q^*(phi(s_t),a:theta)

at=amaxQ(ϕ(st),a:θ) (概率=1-

ϵ

epsilon

ϵ)

执行

a

t

a_t

at,得到

r

t

r_t

rt和图片

x

t

+

1

x_{t+1}

xt+1

s

t

+

1

=

s

t

,

ϕ

t

+

1

=

ϕ

(

s

t

+

1

)

s_{t+1}=s_t,phi_{t+1}=phi(s_{t+1})

st+1=st,ϕt+1=ϕ(st+1)

(

ϕ

t

,

a

t

,

r

t

,

ϕ

t

+

1

)

(phi_t,a_t,r_t,phi_{t+1})

(ϕt,at,rt,ϕt+1)存储进

D

D

D

D

D

D中采样

y

i

=

{

r

j

(

t

e

r

m

i

n

a

l

ϕ

j

+

1

)

r

j

+

γ

m

a

x

Q

(

ϕ

j

+

1

,

a

;

θ

)

(

n

o

n

t

e

r

m

i

n

a

l

ϕ

j

+

1

)

y_i = left{begin{matrix} r_j & (terminalquad phi_{j+1})\ r_j +gamma max Q( phi_{j+1},a^{'}; theta) & (non-terminalquad phi_{j+1}) end{matrix}right.

yi={rjrj+γmaxQ(ϕj+1,a;θ)(terminalϕj+1)(nonterminalϕj+1)

根据

(

y

i

Q

(

ϕ

j

,

a

j

:

θ

)

)

2

(y_i-Q(phi_j,a_j:theta))^2

(yiQ(ϕj,aj:θ))2进行梯度下降

5.3 具体代码

import gym
import cv2
import torch
import numpy as np
import torch.nn as nn
import pandas as pd
from torch.nn import Linear, Conv2d, ReLU
import PIL.Image as Image

device=torch.device("cuda:0" if torch.cuda.is_available() else"cpu")

# 经验池
class DQBReplayer:
    def __init__(self, capacity):
        # (S,A,R,S)
        self.memory = pd.DataFrame(index=range(capacity), columns=['observation', 'action', 'reward', 'next_observation', 'done'])
        self.i = 0
        self.count = 0
        self.capacity = capacity
    def store(self,*args):
        self.memory.loc[self.i] = args
        self.i = (self.i + 1)%self.capacity
        self.count = min(self.count+1, self.capacity)
    def sample(self, size):
        indics = np.random.choice(self.count, size=size)
        return (np.stack(self.memory.loc[indics,field]) for field in self.memory.columns)

# Q-Network
class DQN_net(nn.Module):
    def __init__(self):
        super(DQN_net, self).__init__()
        self.conv = nn.Sequential(
            Conv2d(in_channels=4, out_channels=32, kernel_size=8, stride=4),
            ReLU(),
            Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2),
            ReLU(),
            Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1),
            ReLU()
        )
        self.classifier = nn.Sequential(
            Linear(3136, 512),
            ReLU(),
            Linear(512, 4)
        )
    def forward(self, x):
        x = self.conv(x)
        x = x.view(x.size(0),-1)
        output = self.classifier(x)
        return output
    
class DQN(nn.Module):
    def __init__(self, input_shape, env):
        super(DQN, self).__init__()
        self.replayer_start_size = 100000
        self.upon_times = 20
        self.replayer = DQBReplayer(capacity=self.replayer_start_size)
        self.action_n = env.action_space.n
        self.image_stack = input_shape[2]
        self.gamma = 0.99
        self.image_shape = (input_shape[0], input_shape[1])
        self.e_net = DQN_net()
        self.t_net = DQN_net()

        self.learn_step = 0
        self.max_learn_step = 650000
        self.epsilon = 1.
        self.start_learn = False
    def get_next_state(self,state=None,observation=None):
        img=Image.fromarray(observation,"RGB")
        img=img.resize(self.image_shape).convert('L')
        img=np.asarray(img.getdata(),dtype=np.uint8,).reshape(img.size[1],img.size[0])
        if state is None:
            next_state = np.array([img,]*self.image_stack)
        else:
            next_state = np.append(state[1:],[img,],axis=0)
        return next_state
    def decide(self,state,step):
        if self.start_learn == False: #前50000步随机选择
            action = np.random.randint(0, 4)
            return action
        else:
            self.epsilon -= 0.0000053
        if step < 30:
            #每局前三十步随机选择,中间30万,
            #以一定概率(1-epsilon)通过神经网络选择,
            # 最后30万次以0.99概率通过神经网络选择
            action = np.random.randint(0, 4)
        elif np.random.random() < max(self.epsilon, 0.0005):
            action = np.random.randint(0,4)
        else:
            state = state/128 - 1
            y = torch.Tensor(state).float().unsqueeze(0)
            y = y.to(device)
            x = self.e_net(y).detach()
            if self.learn_step%2000==0:
                print("q value{}".format(x))
            action = torch.argmax(x).data.item()
        return action
    
def main():
    sum_reward = 0
    store_count = 0
    env = gym.make('Breakout-v0')
    net = DQN([84,84,4], env).cuda()
    
    Load_Net = 0
    if Load_Net==1:
        load_net_path = './epsiode_2575_reward_10.0.pkl'
        print("Load old net and the path is:",load_net_path)
        net.e_net = torch.load(load_net_path)
        net.t_net = torch.load(load_net_path)
    max_score = 0
    mse = nn.MSELoss()
    mse = mse.cuda()
    opt = torch.optim.RMSprop(net.e_net.parameters(), lr=0.0015)
    for i in range(20000):
        lives = 5
        obs = env.reset()
        state = net.get_next_state(None,obs)
        epoch_reward = 0
        if i%100==0:
            print("{} times_game".format(i),end=':')
            print('epoch_reward:{}'.format(epoch_reward))
        for step in range(500000):
            action = net.decide(state,step=step)
            obs, reward, done, _ = env.step(action)
            next_state = net.get_next_state(state, obs) 
            epoch_reward += reward
            net.replayer.store(state, action, reward, next_state, done)
            net.learn_step += 1
            if net.learn_step >= net.replayer_start_size // 2 and net.learn_step % 4 == 0:
                if net.start_learn == False:
                    net.start_learn = True
                    print('Start Learn!')
                sample_n = 32
                states, actions, rewards, next_states, dones = net.replayer.sample(sample_n)
                states, next_states = states / 128 -1, next_states / 128 -1
                rewards = torch.Tensor(np.clip(rewards,-1,1)).unsqueeze(1).cuda()
                states, next_states = torch.Tensor(states).cuda(), torch.Tensor(next_states).cuda()
                actions = torch.Tensor(actions).long().unsqueeze(1).cuda()
                dones = torch.Tensor(dones).unsqueeze(1).cuda()
                q = net.e_net(states).gather(1, actions)
                q_next = net.t_net(next_states).detach().max(1)[0].reshape(sample_n, 1)
                tq = rewards + net.gamma * (1-done) * q_next
                loss = mse(q, tq)
                opt.zero_grad()
                loss.backward()
                opt.step()
                if net.learn_step % (net.upon_times * 5) == 0:
                    net.t_net.load_state_dict(net.e_net.state_dict())
                if net.learn_step % 100 == 0:
                    loss_record = loss.item()
                    a_r = torch.mean(rewards, 0).item()
                
            state = next_state
            
            if done:
                save_net_path = './'
                sum_reward+=epoch_reward
                if epoch_reward > max_score:
                    name = "epsiode_" + str(net.learn_step) + "_reward_" + str(epoch_reward) + ".pkl"
                    torch.save(net.e_net, save_net_path+name)
                    max_score = epoch_reward
                elif i % 1000 == 0:
                    name ="No."+str(i)+".pkl"
                    torch.save(net.e_net, save_net_path + name)
                if i%10==0:
                    sum_reward=0
                break
               
import cv2

def PictureArray2Video(pic_list, path='./test.mp4'):
    h,w,_ = pic_list[0].shape[0], pic_list[0].shape[1], pic_list[0].shape[2]
    print(h,w)
    writer = cv2.VideoWriter(path, cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), 10, (w, h), True)
    total_frame = len(pic_list)
    for i in range(total_frame):
        writer.write(pic_list[i])
    writer.release()
    
def test():
    pics = []
    sum_reward = 0
    store_count = 0
    env = gym.make('Breakout-v0')
    net = DQN([84,84,4], env).cuda()
    
    Load_Net = 1
    if Load_Net==1:
        load_net_path = './epsiode_10219_reward_9.0.pkl'
        print("Load old net and the path is:",load_net_path)
        net.e_net = torch.load(load_net_path)
        net.t_net = torch.load(load_net_path)
    max_score = 0
    mse = nn.MSELoss()
    mse = mse.cuda()
    

    obs = env.reset()
    state = net.get_next_state(None,obs)
    epoch_reward = 0
    
    for step in range(500000):
        action = net.decide(state,step=step)
        obs, reward, done, _ = env.step(action)
        pic = env.render(mode='rgb_array')
        pic = cv2.cvtColor(pic,cv2.COLOR_BGR2RGB)
        next_state = net.get_next_state(state, obs) 
        pics.append(pic)
        if done:
            PictureArray2Video(pics)
            break   

5.4 演示效果

这个我感觉要训练好久,我训练了两个小时,reward=11,然后停下了。

在这里插入图片描述

六、DDPG (单摆)

6.1 Pendulum-v1环境介绍

https://www.gymlibrary.dev/environments/classic_control/pendulum/?highlight=pendulum+v1

  • observation (1,3)

    Num Observation Min Max
    0 cos(theta) -1 1
    1 sin(angle) -1 1
    2 角速度 -8.0 8.0
  • action (1,)

    力矩,大小在(-2,2)之前的值

  • 奖励

    r

    =

    (

    θ

    2

    +

    0.1

    ×

    ω

    2

    +

    0.001

    ×

    2

    )

    r = -(theta^2 + 0.1×omega^2 + 0.001×力矩^2)

    r=(θ2+0.1×ω2+0.001×2)

6.2 DDPG算法流程

随机初始化 评论员

Q

(

s

,

a

θ

Q

)

Q(s,a|theta^Q)

Q(s,aθQ)和 演员

μ

(

s

θ

μ

)

mu(s|theta^mu)

μ(sθμ)

初始化目标策略价值网络

Q

Q{'}

Q

θ

theta^{'}

θ

θ

Q

=

θ

Q

,

θ

μ

=

θ

μ

theta^{Q^{'}}=theta^Q,theta^{mu^{'}}=theta^mu

θQ=θQ,θμ=θμ
初始化经验回放池R

for (each episode)

for (each step)

a

t

=

μ

(

s

t

θ

μ

)

a_t=mu(s_t|theta^{mu})

at=μ(stθμ)

s

t

+

1

,

r

t

,

d

o

n

e

,

=

e

n

v

.

s

t

e

p

(

a

t

)

s_{t+1},r_t,done,_ = env.step(a_t)

st+1,rt,done,=env.step(at)

(

s

t

,

a

t

,

r

t

,

s

t

+

1

)

(s_t,a_t,r_t,s_{t+1})

(st,at,rt,st+1)存储进R

从R中采样N条轨迹

(

s

i

,

a

i

,

r

i

,

s

i

+

1

)

(s_i,a_i,r_i,s_{i+1})

(si,ai,ri,si+1)

y

i

=

r

i

+

γ

Q

(

s

i

+

1

,

μ

(

s

i

+

1

θ

Q

)

θ

Q

)

y_i = r_i + gamma Q^{'}(s_{i+1},mu^{'}(s_{i+1}|theta^{Q^{'}})|theta^{Q^{'}})

yi=ri+γQ(si+1,μ(si+1θQ)θQ)

L

o

s

s

=

1

N

Σ

(

y

i

Q

(

s

i

,

a

i

θ

Q

)

)

2

Loss = frac{1}{N}Sigma(y_i-Q(s_i,a_i|theta^{Q}))^2

Loss=N1Σ(yiQ(si,aiθQ))2, 更新评论员网络

θ

μ

J

=

1

N

Σ

a

Q

(

s

,

a

θ

Q

)

s

=

s

i

,

a

=

μ

(

s

i

)

θ

μ

μ

(

s

θ

μ

)

)

s

i

bigtriangledown _{theta^mu}J = frac{1}{N}Sigma bigtriangledown_a Q(s,a|theta^Q)|_{s=s_i,a=mu(s_i)}bigtriangledown_{theta^mu} mu(s|theta^mu)|)_{s_i}

θμJ=N1ΣaQ(s,aθQ)s=si,a=μ(si)θμμ(sθμ))si

更新目标网络:

θ

Q

=

τ

θ

Q

+

(

1

τ

)

θ

Q

theta^{Q^{'}} = tau theta^Q + (1-tau)theta^{Q^{'}}

θQ=τθQ+(1τ)θQ

θ

μ

=

τ

θ

μ

+

(

1

τ

)

θ

μ

theta^{mu^{'}} = tau theta^mu + (1-tau)theta^{mu^{'}}

θμ=τθμ+(1τ)θμ

6.3 具体代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import gym
import time

#####################  hyper parameters  ####################
EPISODES = 200
EP_STEPS = 200
LR_ACTOR = 0.001
LR_CRITIC = 0.002
GAMMA = 0.9
TAU = 0.01
MEMORY_CAPACITY = 10000
BATCH_SIZE = 32
RENDER = False
ENV_NAME = 'Pendulum-v1'

########################## DDPG Framework ######################
class ActorNet(nn.Module): # define the network structure for actor and critic
    def __init__(self, s_dim, a_dim):
        super(ActorNet, self).__init__()
        self.fc1 = nn.Linear(s_dim, 30)
        self.fc1.weight.data.normal_(0, 0.1) # initialization of FC1
        self.out = nn.Linear(30, a_dim)
        self.out.weight.data.normal_(0, 0.1) # initilizaiton of OUT
    def forward(self, x):
        x = self.fc1(x)
        x = F.relu(x)
        x = self.out(x)
        x = torch.tanh(x)
        actions = x * 2 # for the game "Pendulum-v0", action range is [-2, 2]
        return actions

class CriticNet(nn.Module):
    def __init__(self, s_dim, a_dim):
        super(CriticNet, self).__init__()
        self.fcs = nn.Linear(s_dim, 30)
        self.fcs.weight.data.normal_(0, 0.1)
        self.fca = nn.Linear(a_dim, 30)
        self.fca.weight.data.normal_(0, 0.1)
        self.out = nn.Linear(30, 1)
        self.out.weight.data.normal_(0, 0.1)
    def forward(self, s, a):
        x = self.fcs(s)
        y = self.fca(a)
        actions_value = self.out(F.relu(x+y))
        return actions_value
    
class DDPG(object):
    def __init__(self, a_dim, s_dim, a_bound):
        self.a_dim, self.s_dim, self.a_bound = a_dim, s_dim, a_bound
        self.memory = np.zeros((MEMORY_CAPACITY, s_dim * 2 + a_dim + 1), dtype=np.float32)
        self.pointer = 0 # serves as updating the memory data 
        # Create the 4 network objects
        self.actor_eval = ActorNet(s_dim, a_dim)
        self.actor_target = ActorNet(s_dim, a_dim)
        self.critic_eval = CriticNet(s_dim, a_dim)
        self.critic_target = CriticNet(s_dim, a_dim)
        # create 2 optimizers for actor and critic
        self.actor_optimizer = torch.optim.Adam(self.actor_eval.parameters(), lr=LR_ACTOR)
        self.critic_optimizer = torch.optim.Adam(self.critic_eval.parameters(), lr=LR_CRITIC)
        # Define the loss function for critic network update
        self.loss_func = nn.MSELoss()
    def store_transition(self, s, a, r, s_): # how to store the episodic data to buffer
        transition = np.hstack((s, a, [r], s_))
        index = self.pointer % MEMORY_CAPACITY # replace the old data with new data 
        self.memory[index, :] = transition
        self.pointer += 1
    
    def choose_action(self, s):
        # print(s)
        s = torch.unsqueeze(torch.FloatTensor(s), 0)
        return self.actor_eval(s)[0].detach()
    
    def learn(self):
        # softly update the target networks
        for x in self.actor_target.state_dict().keys():
            eval('self.actor_target.' + x + '.data.mul_((1-TAU))')
            eval('self.actor_target.' + x + '.data.add_(TAU*self.actor_eval.' + x + '.data)')
        for x in self.critic_target.state_dict().keys():
            eval('self.critic_target.' + x + '.data.mul_((1-TAU))')
            eval('self.critic_target.' + x + '.data.add_(TAU*self.critic_eval.' + x + '.data)')           
        # sample from buffer a mini-batch data
        indices = np.random.choice(MEMORY_CAPACITY, size=BATCH_SIZE)
        batch_trans = self.memory[indices, :]
        # extract data from mini-batch of transitions including s, a, r, s_
        batch_s = torch.FloatTensor(batch_trans[:, :self.s_dim])
        batch_a = torch.FloatTensor(batch_trans[:, self.s_dim:self.s_dim + self.a_dim])
        batch_r = torch.FloatTensor(batch_trans[:, -self.s_dim - 1: -self.s_dim])
        batch_s_ = torch.FloatTensor(batch_trans[:, -self.s_dim:])
        # make action and evaluate its action values
        a = self.actor_eval(batch_s)
        q = self.critic_eval(batch_s, a)
        actor_loss = -torch.mean(q)
        # optimize the loss of actor network
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()
        
        # compute the target Q value using the information of next state
        a_target = self.actor_target(batch_s_)
        q_tmp = self.critic_target(batch_s_, a_target)
        q_target = batch_r + GAMMA * q_tmp
        # compute the current q value and the loss
        q_eval = self.critic_eval(batch_s, batch_a)
        td_error = self.loss_func(q_target, q_eval)
        # optimize the loss of critic network
        self.critic_optimizer.zero_grad()
        td_error.backward()
        self.critic_optimizer.step()
        
############################### Training ######################################
# Define the env in gym
env = gym.make(ENV_NAME)
env = env.unwrapped
env.seed(1)
s_dim = env.observation_space.shape[0]
a_dim = env.action_space.shape[0]
a_bound = env.action_space.high
a_low_bound = env.action_space.low

ddpg = DDPG(a_dim, s_dim, a_bound)
var = 3 # the controller of exploration which will decay during training process
t1 = time.time()
for i in range(EPISODES):
    s = env.reset()
    ep_r = 0
    for j in range(EP_STEPS):
        if RENDER: env.render()
        # add explorative noise to action
        a = ddpg.choose_action(s)
        a = np.clip(np.random.normal(a, var), a_low_bound, a_bound)
        s_, r, done, info, _ = env.step(a)
        ddpg.store_transition(s, a, r / 10, s_) # store the transition to memory
        
        if ddpg.pointer > MEMORY_CAPACITY:
            var *= 0.9995 # decay the exploration controller factor
            ddpg.learn()
            
        s = s_
        ep_r += r
        if j == EP_STEPS - 1:
            print('Episode: ', i, ' Reward: %i' % (ep_r), 'Explore: %.2f' % var)
            if ep_r > -300 : RENDER = True
            break
print('Running time: ', time.time() - t1)
    
       
            
if __name__ == "__main__":
    learn()    
    env.close()
    

6.4 演示效果

在这里插入图片描述

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇
下一篇>>