基于max30102的物联网病房监测系统(中断处理和主题逻辑)

目录

五、中断处理

六、主体框架

对采集数据的初始化

核心功能的实现

烟雾

通信帧格式

wifi接收数据的处理

OLED显示


 

五、中断处理

void SysTick_Handler(void)
{
	TimingDelay_Decrement();
}

void ESP8266_USART_INT_FUN(void)
{
	uint8_t ucCh;
	
	if ( USART_GetITStatus (ESP8266_USARTx, USART_IT_RXNE ) != RESET )
	{
		ucCh  = USART_ReceiveData(ESP8266_USARTx );
		if ( strEsp8266_Fram_Record .InfBit .FramLength < ( RX_BUF_MAX_LEN - 1 ) )                       //预留1个字节写结束符
			strEsp8266_Fram_Record .Data_RX_BUF [ strEsp8266_Fram_Record .InfBit .FramLength ++ ]  = ucCh;

	}
	 	 
	if ( USART_GetITStatus(ESP8266_USARTx, USART_IT_IDLE ) == SET )                                         //数据帧接收完毕
	{
    strEsp8266_Fram_Record .InfBit .FramFinishFlag = 1;
		
		ucCh = USART_ReceiveData(ESP8266_USARTx );
		ucTcpClosedFlag = strstr(strEsp8266_Fram_Record .Data_RX_BUF, "CLOSEDrn" ) ? 1 : 0;
		
  }
}


void ADC_IRQHandler_FUN(void)
{
  if(ADC_GetITStatus(ADCx,ADC_IT_EOC)!=RESET)
  {
    ADC_ClearITPendingBit(ADCx,ADC_IT_EOC);
    /* 读取ADC的转换值 */
    ADC_ConvertedValue = ADC_GetConversionValue(ADCx);
    
  }
}

主要就是3个ESP8266的通信中断,定时器中断和ADC采集中断

六、主体框架

对采集数据的初始化

 for(i=0;i<n_ir_buffer_length;i++)
    {
        while(MAX30102_INT==1);   //wait until the interrupt pin asserts
        
		max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp);
		aun_red_buffer[i] =  (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2];    // Combine values to get the actual number
		aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5];   // Combine values to get the actual number
            
        if(un_min>aun_red_buffer[i])
            un_min=aun_red_buffer[i];    //update signal min
        if(un_max<aun_red_buffer[i])
            un_max=aun_red_buffer[i];    //update signal max
    }
	un_prev_data=aun_red_buffer[i];
	//calculate heart rate and SpO2 after first 500 samples (first 5 seconds of samples)
    maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid); 
		//dumping the first 100 sets of samples in the memory and shift the last 400 sets of samples to the top
        for(i=100;i<500;i++)
        {
            aun_red_buffer[i-100]=aun_red_buffer[i];
            aun_ir_buffer[i-100]=aun_ir_buffer[i];
            
            //update the signal min and max
            if(un_min>aun_red_buffer[i])
            un_min=aun_red_buffer[i];
            if(un_max<aun_red_buffer[i])
            un_max=aun_red_buffer[i];
        }
		//take 100 sets of samples before calculating the heart rate.
        for(i=400;i<500;i++)
        {
            un_prev_data=aun_red_buffer[i-1];
            while(MAX30102_INT==1);
            max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp);
			aun_red_buffer[i] =  (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2];    // Combine values to get the actual number
			aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5];   // Combine values to get the actual number
        
            if(aun_red_buffer[i]>un_prev_data)
            {
                f_temp=aun_red_buffer[i]-un_prev_data;
                f_temp/=(un_max-un_min);
                f_temp*=MAX_BRIGHTNESS;
                n_brightness-=(int)f_temp;
                if(n_brightness<0)
                    n_brightness=0;
            }
            else
            {
                f_temp=un_prev_data-aun_red_buffer[i];
                f_temp/=(un_max-un_min);
                f_temp*=MAX_BRIGHTNESS;
                n_brightness+=(int)f_temp;
                if(n_brightness>MAX_BRIGHTNESS)
                    n_brightness=MAX_BRIGHTNESS;
            }
			//send samples and calculation result to terminal program through UART
			if(ch_hr_valid == 1 && n_heart_rate<120)//**/ ch_hr_valid == 1 && ch_spo2_valid ==1 && n_heart_rate<120 && n_sp02<101
			{
				dis_hr = n_heart_rate;
				dis_spo2 = n_sp02;
			}
			else
			{
				dis_hr = 0;
				dis_spo2 = 0;
			}
//				printf("HR=%i, ", n_heart_rate); 
//				printf("HRvalid=%i, ", ch_hr_valid);
//				printf("SpO2=%i, ", n_sp02);
//				printf("SPO2Valid=%irn", ch_spo2_valid);
		}
        maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid);

核心功能的实现

		if(order[0] == 1)
		{
			show2(order[1],order[2],order[3],order[4]);
			Delay_ms(500);
			printf("可燃气体浓度  %frn", Smog_GetPPM());
			if(order[1] == 1)
			{
				LED1_ON;
				
			}else{
				LED1_OFF;
			}
			
			if(order[2] == 1)
			{
				LED2_ON;
		
			}else{
				LED2_OFF;
			}

			if(order[3] == 1)
			{
				LED3_ON;
				
			}else{
				LED3_OFF;
			}

			if(order[4] == 1)
			{
				BEEP_StateSet(BEEPState_ON);
			}else{
				BEEP_StateSet(BEEPState_OFF);
			}			
			
		}else{
			sprintf(cStr,"%d+%d+%d+%d+%d+%d+%d",DHT11_Data.temp_int,DHT11_Data.humi_deci,DHT11_Data.temp_int,DHT11_Data.temp_deci,dis_hr,dis_spo2,m);
			ESP8266_SendString(ENABLE,cStr,0,Single_ID_0);  
			show((u8 *)temp_1,(u8 *)hum_2,(u8 *)s_3,(u8 *)o_4);
			
			
			if( DHT11_Data.temp_int > order[1] || DHT11_Data.temp_int < order[2] )
			{
				LED1_ON;
				LED2_OFF;
				LED3_OFF;
				BEEP_StateSet(BEEPState_ON);
				Delay_ms(1000);
			}else if( DHT11_Data.humi_int > order[3] || DHT11_Data.humi_int < order[4] ){
				LED2_ON;
				LED1_OFF;
				LED3_OFF;
				BEEP_StateSet(BEEPState_ON);
				Delay_ms(1000);
			}else if( dis_hr > order[6] || dis_hr < order[5]){
				if( dis_hr == 0)
				{}else{
					LED1_ON;
					LED2_ON;
					LED3_OFF;
					BEEP_StateSet(BEEPState_ON);
					Delay_ms(1000);
				}
			}else if( dis_spo2 < order[7] || dis_spo2 > order[8]){
				if( dis_spo2 == 0)
				{}else{
					LED2_ON;
					LED3_ON;
					LED1_OFF;
					BEEP_StateSet(BEEPState_ON);
					Delay_ms(1000);
				}
			}else if(m == 1){
				LED1_OFF;
				LED2_OFF;
				LED3_ON;
				BEEP_StateSet(BEEPState_ON);
				Delay_ms(1000);
			}else{
				LED1_OFF;
				LED2_OFF;
				LED3_OFF;
				BEEP_StateSet(BEEPState_OFF);	
				Delay_ms(1000);
			}
			
			LED1_OFF;
			LED2_OFF;
			LED3_OFF;
			BEEP_StateSet(BEEPState_OFF);
		}

我把服务器数据重新转换放到了数组中,再用一个大分支结构对其中的数据进行判别然后实现对应功能。

烟雾

读取电压值 

float Smog_Get_Vol(void)
{
	u16 adc_value = 0;//这是从MQ-7传感器模块电压输出的ADC转换中获得的原始数字值,该值的范围为0到4095,将模拟电压表示为数字值
	float voltage = 0;//MQ-7传感器模块的电压输出,与一氧化碳的浓度成正比
	
	adc_value = ADC_ConvertedValue;//#define SMOG_ADC_CHX	ADC_Channel_4	定义烟雾传感器所在的ADC通道编号
	Delay_ms(5);
	
    voltage  = (3.3/4096.0)*(adc_value);
	
	return voltage;
}

/*********************
// 传感器校准函数,根据当前环境PPM值与测得的RS电压值,反推出R0值。
// 在空气中运行过后测出R0为26
float MQ7_PPM_Calibration()
{
    float RS = 0;
    float R0 = 0;
    RS = (3.3f - Smog_Get_Vol()) / Smog_Get_Vol() * RL;//RL    10  // RL阻值
    R0 = RS / pow(CAL_PPM / 98.322, 1 / -1.458f);//CAL_PPM  10  // 校准环境中PPM值
    return R0;
}
**********************/ 

// 计算Smog_ppm
float Smog_GetPPM()
{
	float RS = (3.3f - Smog_Get_Vol()) / Smog_Get_Vol() * RL;
	float ppm = 98.322f * pow(RS/R0, -1.458f);
	}

通信帧格式

接收帧格式

模式 1
1 LED1 LED2 LED3 BEEP
每个功能一位控制 1开 0关

模式2

0 两位数表示温度上限 左高位右低位 温度下限 湿度上限 湿度下限 心率用一位表示 0 1 2 分别为 小孩 成年人 老人 输入其它数值表示是个人就行 两位表示血氧下限 左高右低
模式2接收一共12位

050108020490

发送帧格式
sprintf(cStr,"%d+%d+%d+%d+%d+%d+%d",DHT11_Data.temp_int,DHT11_Data.humi_deci,DHT11_Data.temp_int,DHT11_Data.temp_deci,dis_hr,dis_spo2,m);
温度整数+温度小数+湿度整数+湿度小数+心率+血氧饱和度+是否有可燃气体

wifi接收数据的处理

 由于接收到的是字符串,所以剪掉字符0变成整数,传多位数据的时候乘10改变位置就行。

主要是确保数据不会出错。暂时没使用任何协议,算是自己指定了一个没有校验的简单协议吧。以后有机会改成MQTT格式或者MODBUS格式的协议。

u32* wifi_rec(void)
{
	u32 pCH;
	int i;
    ESP8266_ReceiveString(ENABLE);
	if ( strEsp8266_Fram_Record .InfBit .FramFinishFlag )
	{
    	strEsp8266_Fram_Record .Data_RX_BUF [ strEsp8266_Fram_Record .InfBit .FramLength ]  = '';
			
		printf ( "rn%srn", strEsp8266_Fram_Record .Data_RX_BUF );
		if(strEsp8266_Fram_Record .Data_RX_BUF[0] == '1'){
			for(i = 0; i < 12;i++)
			{
				order[i] = strEsp8266_Fram_Record .Data_RX_BUF[i] - '0';
			}	
		}else{
			for(i = 0; i < 9;i++)
			{
				if (i == 0)
				order[i] = strEsp8266_Fram_Record .Data_RX_BUF[i] - '0';
				else{
					if( i % 2 == 0)
					{
						order[i/2] = (((strEsp8266_Fram_Record .Data_RX_BUF[i-1] - '0') * 10) + (strEsp8266_Fram_Record .Data_RX_BUF[i] - '0'));
					}
				}
			}
		
			//0 模式 1234 温湿度 56心率 78血氧
			//第九位 0 1 2 小孩 成年人 老人   80-140  60-100  55-75  
			switch(strEsp8266_Fram_Record .Data_RX_BUF[9])
			{
				case 0:
					order[5] = 80;
					order[6] = 140;
					break;
				case 1:
					order[5] = 60;
					order[6] = 100;
					break;
				case 2:
					order[5] = 55;
					order[6] = 75;
					break;
				default:
					order[5] = 40;
					order[6] = 160;
					break;
			}
			//血氧饱和度正常人 90 - 100
		
			order[7] = (((strEsp8266_Fram_Record .Data_RX_BUF[10] - '0') * 10) + (strEsp8266_Fram_Record .Data_RX_BUF[11] - '0'));
			printf("血氧下限 %d",order[7]);
			order[8] = 100;
		}
      /*将接收到的字符串转成整形数*/
      pCH=atoi(strEsp8266_Fram_Record .Data_RX_BUF);

       switch(pCH)
       {
         case 0:
         break;
          
         case 1:
         break;
         
         case 2:

         break;
             
       }         
    }  
	return order;
}

OLED显示

void show(uint8_t *a,uint8_t *b, uint8_t *c, uint8_t *o)
{
	OLED_CLS();//清屏
	OLED_ShowCN(0,0,26);//温
	OLED_ShowCN(16,0,27);//度
	OLED_ShowCN(32,0,14);//:
	OLED_ShowStr(48,0,a,2);		//2表示8X16
	

	OLED_ShowCN(0,2,28);//湿
	OLED_ShowCN(16,2,27);//度
	OLED_ShowCN(32,2,14);//:
	OLED_ShowStr(48,2,b,2);		//2表示8X16
	
	OLED_ShowCN(0,4,29);//心
	OLED_ShowCN(16,4,30);//率
	OLED_ShowCN(32,4,14);//:
	OLED_ShowStr(48,4,c,2);		//2表示8X16
	
	OLED_ShowCN(0,6,37);//血
	OLED_ShowCN(16,6,38);//氧
	OLED_ShowCN(32,6,14);//:
	OLED_ShowStr(48,6,o,2);		//2表示8X16
}

上面是自主更新,下面是被控制模式,由于服务器童鞋没写远程改上下限功能,我的这部分也被注释掉了。真要用还得调试一下,毕竟没检验过。 

void show2(u32 a,u32 b, u32 c, u32 o)
{
	OLED_CLS();//清屏
	
	OLED_ShowCN(0,0,41);//红
	OLED_ShowCN(16,0,44);//灯
	OLED_ShowCN(32,0,14);//:
	if(a  == 1)
	{
		OLED_ShowCN(48,0,46);//开
	}else{
		OLED_ShowCN(48,0,47);//关
	}
	
	OLED_ShowCN(0,2,45);//绿
	OLED_ShowCN(16,2,44);//灯
	OLED_ShowCN(32,2,14);//:
	if(b  == 1)
	{
		OLED_ShowCN(48,2,46);//开
	}else{
		OLED_ShowCN(48,2,47);//关
	}
	
	OLED_ShowCN(0,4,42);//黄
	OLED_ShowCN(16,4,44);//灯
	OLED_ShowCN(32,4,14);//:
	if(c  == 1)
	{
		OLED_ShowCN(48,4,46);//开
	}else{
		OLED_ShowCN(48,4,47);//关
	}

	OLED_ShowStr(0,6,(u8*)"BEEP",2);
	OLED_ShowCN(32,6,14);//:
	if(o  == 1)
	{
		OLED_ShowCN(48,6,46);//开
	}else{
		OLED_ShowCN(48,6,47);//关
	}
}

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇
下一篇>>