2.2 搭建Spark开发环境

一、Spark开发环境准备工作
由于Spark仅仅是一种计算框架,不负责数据的存储和管理,因此,通常都会将Spark和Hadoop进行统一部署,由Hadoop中的HDFS、HBase等组件负责数据的存储管理,Spark负责数据计算。

安装Spark集群前,需要安装Hadoop环境

软件 版本
Linux系统 CentOS7.9版本
Hadoop 3.3.4版本
JDK 1.8版本 (jdk8u231)
Spark 3.3.2版本
二、了解Spark的部署模式
(一)Standalone模式
Standalone模式被称为集群单机模式。该模式下,Spark集群架构为主从模式,即一台Master节点与多台Slave节点,Slave节点启动的进程名称为Worker,存在单点故障的问题。
(二)Mesos模式
Mesos模式被称为Spark on Mesos模式。Mesos是一款资源调度管理系统,为Spark提供服务,由于Spark与Mesos存在密切的关系,因此在设计Spark框架时充分考虑到对Mesos的集成。
(三)Yarn模式
Yarn模式被称为Spark on Yarn模式,即把Spark作为一个客户端,将作业提交给Yarn服务。由于在生产环境中,很多时候都要与Hadoop使用同一个集群,因此采用Yarn来管理资源调度,可以提高资源利用率。
三、搭建Spark单机版环境
(一)前提是安装配置好了JDK
查看JDK版本

(二)下载、安装与配置Spark
1、下载Spark安装包
官网下载页面:https://spark.apache.org/downloads.html

下载链接:https://www.apache.org/dyn/closer.lua/spark/spark-3.3.2/spark-3.3.2-bin-hadoop3.tgz

下载到本地

2、将Spark安装包上传到虚拟机
将Spark安装包上传到ied虚拟机/opt目录

3、将Spark安装包解压到指定目录
执行命令:tar -zxvf spark-3.3.2-bin-hadoop3.tgz -C /usr/local

查看解压之后的spark目录

4、配置Spark环境变量
执行vim /etc/profile

export SPARK_HOME=/usr/local/spark-3.3.2-bin-hadoop3
export PATH=

S

P

A

R

K

H

O

M

E

/

b

i

n

:

SPARK_HOME/bin:

SPARKHOME/bin:SPARK_HOME/sbin:$PATH
1
2
存盘退出,执行命令:source /etc/profile,让环境配置生效

(三)使用Spark单机版环境
1、使用SparkPi来计算Pi的值
执行命令:run-example SparkPi 2 (其中参数2是指两个并行度)

查看计算结果:Pi is roughly 3.1412357061785308

2、使用Scala版本Spark-Shell
Spark-Shell是一个强大的交互式数据分析工具,初学者可以很好的使用它来学习相关API,用户可以在命令行下使用Scala编写Spark程序,并且每当输入一条语句,Spark-Shell就会立即执行语句并返回结果,这就是我们所说的REPL(Read-Eval-Print Loop,交互式解释器),Spark-Shell支持Scala和Python。
命令格式:spark-shell --master
–master表示指定当前连接的Master节点
用于指定Spark的运行模式
参数名称 相关说明
local 使用一个Worker线程本地化运行Spark
local[] 本地运行Spark,工作线程数量与本机CPU逻辑核心数量相同
local[N] 使用N个Worker线程本地化运行Spark
spark://host:port Standalone模式下,连接到指定的Spark集群,默认端口7077
yarn-client 以客户端模式连接Yarn集群,集群位置可在HADOOP_CONF_DIR环境变量中配置
yarn-cluster 以集群模式连接Yarn集群,集群位置可在HADOOP_CONF_DIR 环境变量中配置
mesos://host:port 连接到指定的Mesos集群。默认接口是5050
执行spark-shell命令,相当于执行spark-shell --master local[
]命令,启动Scala版的Spark-Shell

访问Spark的Web UI界面 - http://ied:4040

注意:Spark 3.3.2使用的Scala版本其实是2.12.15

利用print函数输出了一条信息

计算1 + 2 + 3 + …… + 100

输出字符直角三角形

打印九九表

执行:quit命令,退出Spark Shell交互式环境

3、使用Python版本Spark-Shell
执行pyspark命令启动Python版的Spark-Shell

执行命令:yum -y install python3

执行命令:pyspark

输出一条信息,进行加法运算,然后退出交互式环境

4、初识弹性分布式数据集RDD
Spark 中的RDD (Resilient Distributed Dataset) 就是一个不可变的分布式对象集合。每个RDD 都被分为多个分区,这些分区运行在集群中的不同节点上。RDD 可以包含Python、Java、Scala 中任意类型的对象,甚至可以包含用户自定义的对象。用户可以使用两种方法创建RDD:读取一个外部数据集,或在驱动器程序里分发驱动器程序中的对象集合(比如list 和set)。

演示利用集合创建RDD

在/home目录下创建test.txt文件

例1、创建一个RDD
在pyspark命令行,执行命令:lines = sc.textFile(‘/home/test.txt’)

创建出来后,RDD 支持两种类型的操作: 转化操作(transformation) 和行动操作(action)。转化操作会由一个RDD 生成一个新的RDD。另一方面,行动操作会对RDD 计算出一个结果,并把结果返回到驱动器程序中,或把结果存储到外部存储系统(如HDFS)中。

例2、调用转化操作filter()
执行命令:sparkLines = lines.filter(lambda line: ‘spark’ in line)

例3、调用行动操作first()
执行命令:sparkLines.first()

转化操作和行动操作的区别在于Spark 计算RDD 的方式不同。虽然你可以在任何时候定义新的RDD,但Spark 只会惰性计算这些RDD。它们只有第一次在一个行动操作中用到时,才会真正计算。这种策略刚开始看起来可能会显得有些奇怪,不过在大数据领域是很有道理的。比如,看看例2 和例3,我们以一个文本文件定义了数据,然后把其中包含spark的行筛选出来。如果Spark 在我们运行lines = sc.textFile(…) 时就把文件中所有的行都读取并存储起来,就会消耗很多存储空间,而我们马上就要筛选掉其中的很多数据。相反, 一旦Spark 了解了完整的转化操作链之后,它就可以只计算求结果时真正需要的数据。事实上,在行动操作first() 中,Spark 只需要扫描文件直到找到第一个匹配的行为止,而不需要读取整个文件。
如果要显示全部包含spark的行,执行命令:sparkLines.collect()

同样的任务,在Scala的Spark Shell里完成

补充练习:利用Spark RDD实现词频统计
在spark-shell里完成

在pyspark里完成

但是执行wc1.collect()就会报错,目前没有解决问题。

四、搭建Spark Standalone集群
(一)Spark Standalone架构
Spark Standalone模式为经典的Master/Slave(主/从)架构,资源调度是Spark自己实现的。在Standalone模式中,根据应用程序提交的方式不同,Driver(主控进程)在集群中的位置也有所不同。应用程序的提交方式主要有两种:client和cluster,默认是client。可以在向Spark集群提交应用程序时使用–deploy-mode参数指定提交方式。
1、client提交方式
当提交方式为client时,运行架构如下图所示

集群的主节点称为Master节点,在集群启动时会在主节点启动一个名为Master的守护进程,类似YARN集群的ResourceManager;从节点称为Worker节点,在集群启动时会在各个从节点上启动一个名为Worker的守护进程,类似YARN集群的NodeManager。

Spark在执行应用程序的过程中会启动Driver和Executor两种JVM进程。

Driver为主控进程,负责执行应用程序的main()方法,创建SparkContext对象(负责与Spark集群进行交互),提交Spark作业,并将作业转化为Task(一个作业由多个Task任务组成),然后在各个Executor进程间对Task进行调度和监控。通常用SparkContext代表Driver。在上图的架构中,Spark会在客户端启动一个名为SparkSubmit的进程,Driver程序则运行于该进程。

Executor为应用程序运行在Worker节点上的一个进程,由Worker进程启动,负责执行具体的Task,并存储数据在内存或磁盘上。每个应用程序都有各自独立的一个或多个Executor进程。在Spark Standalone模式和Spark on YARN模式中,Executor进程的名称为CoarseGrainedExecutorBackend,类似运行MapReduce程序所产生的YarnChild进程,并且同时与Worker、Driver都有通信。

2、cluster提交方式
当提交方式为cluster时,运行架构如下图所示

Standalone cluster提交方式提交应用程序后,客户端仍然会产生一个名为SparkSubmit的进程,但是该进程会在应用程序提交给集群之后就立即退出。当应用程序运行时,Master会在集群中选择一个Worker进程启动一个名为DriverWrapper的子进程,该子进程即为Driver进程,所起的作用相当于YARN集群的ApplicationMaster角色,类似MapReduce程序运行时所产生的MRAppMaster进程。
(二)Spark集群拓扑
1、集群拓扑
一个主节点,两个从节点

2、集群角色分配
Spark Standalone模式的集群搭建需要在集群的每个节点都安装Spark,集群角色分配如下表所示。
节点 角色
master Master
slave1 Worker
slave2 Worker
(三)前提条件:安装配置了分布式Hadoop环境
启动hadoop集群

访问Hadoop WebUI界面

(四)在master虚拟机上安装配置Spark
1、将spark安装包上传到master虚拟机
进入/opt目录,查看上传的spark安装包

2、将spark安装包解压到指定目录
执行命令:tar -zxvf spark-3.3.2-bin-hadoop3.tgz -C /usr/local

3、配置spark环境变量
执行命令:vim /etc/profile

export SPARK_HOME=/usr/local/spark-3.3.2-bin-hadoop3
export PATH=

S

P

A

R

K

H

O

M

E

/

b

i

n

:

SPARK_HOME/bin:

SPARKHOME/bin:SPARK_HOME/sbin:$PATH

存盘退出后,执行命令:source /etc/profile,让配置生效

查看spark安装目录(bin、sbin和conf三个目录很重要)

4、编辑spark环境配置文件
进入spark配置目录后,执行命令:cp spark-env.sh.template spark-env.sh与vim spark-env.sh

添加三行语句

export JAVA_HOME=/usr/local/jdk1.8.0_231
export SPARK_MASTER_HOST=master
export SPARK_MASTER_PORT=7077

JAVA_HOME:指定JAVA_HOME的路径。若集群中每个节点在/etc/profile文件中都配置了JAVA_HOME,则该选项可以省略,Spark集群启动时会自动读取。为了防止出错,建议此处将该选项配置上。
SPARK_MASTER_HOST:指定集群主节点(master)的主机名,此处为master。
SPARK_MASTER_PORT:指定Master节点的访问端口,默认为7077。
存盘退出,执行命令:source spark-env.sh,让配置生效

5、创建slaves文件,添加从节点
执行命令:vim slaves,添加两个从节点主机名

(五)在slave1虚拟机上安装配置Spark
1、把master虚拟机上安装的spark分发给slave1虚拟机
执行命令:scp -r

S

P

A

R

K

H

O

M

E

r

o

o

t

@

s

l

a

v

e

1

:

SPARK_HOME root@slave1:

SPARKHOMEroot@slave1:SPARK_HOME

2、将master虚拟机上环境变量配置文件分发到slave1虚拟机
在master虚拟机上,执行命令:scp /etc/profile root@slave1:/etc/profile

在slave1虚拟机上,执行命令:source /etc/profile,让环境配置生效

3、在slave1虚拟机上让spark环境配置文件生效
在slave1虚拟机上,进入spark配置目录,执行命令:source spark-env.sh

(六)在slave2虚拟机上安装配置Spark
1、把master虚拟机上安装的spark分发给slave2虚拟机
执行命令:scp -r

S

P

A

R

K

H

O

M

E

r

o

o

t

@

s

l

a

v

e

2

:

SPARK_HOME root@slave2:

SPARKHOMEroot@slave2:SPARK_HOME

2、将master虚拟机上环境变量配置文件分发到slave2虚拟机
在master虚拟机上,执行命令:scp /etc/profile root@slave2:/etc/profile

在slave2虚拟机上,执行命令:source /etc/profile,让环境配置生效

3、在slave2虚拟机上让spark环境配置文件生效
在slave2虚拟机上,进入spark配置目录,执行命令:source spark-env.sh

(七)启动Spark Standalone集群
Spark Standalone集群使用Spark自带的资源调度框架,但一般我们把数据保存在HDFS上,用HDFS做数据持久化,所以Hadoop还是需要配置,但是可以只配置HDFS相关的,而Hadoop YARN不需要配置。启动Spark Standalone集群,不需要启动YARN服务,因为Spark会使用自带的资源调度框架。
1、启动hadoop的dfs服务
在master虚拟机上执行命令:start-dfs.sh

2、启动Spark集群
执行命令:start-all.sh

查看start-all.sh的源码启动Master与Worker的命令

Start Master

“${SPARK_HOME}/sbin”/start-master.sh

Start Worker

s"${SPARK_HOME}/sbin"/start-slaves.sh

可以看到,当执行start-all.sh命令时,会分别执行start-master.sh命令启动Master,执行start-slaves.sh命令启动Worker。

注意,若spark-evn.sh中配置了SPARK_MASTER_HOST属性,则必须在该属性指定的主机上启动Spark集群,否则会启动不成功;若没有配置SPARK_MASTER_HOST属性,则可以在任意节点上启动Spark集群,当前执行启动命令的节点即为Master节点。

启动完毕后,分别在各节点执行jps命令,查看启动的进程。若在master节点存在Master进程,slave1节点存在Worker进程,slave2节点存在Worker进程,则说明集群启动成功。

查看master节点进程

查看slave1节点进程

查看slave2节点进程

(八)访问Spark的WebUI
在浏览器里访问http://master:8080

在浏览器访问http://slave1:8081

在浏览器访问http://slave2:8081

如果要用IP地址来访问,得用浮动IP地址,不能用私有IP地址

用私有IP地址访问是不行的 - http://192.168.1.101:8080/

用浮动IP地址来访问才可以 - 192.168.218.181

查看私有云上虚拟机的配置

(九)启动Scala版Spark Shell
执行命令:spark-shell --master spark://master:7077 (注意–master,两个-不能少)

在/opt目录里执行命令:vim test.txt

在HDFS上创建park目录,将test.txt上传到HDFS的/park目录

读取HDFS上的文件,创建RDD,执行命令:val rdd = sc.textFile(“hdfs://master:9000/park/test.txt”)(说明:val rdd = sc.textFile(“/park/test.txt”)读取的依然是HDFS上的文件,绝对不是本地文件)

收集rdd的数据,执行命令:rdd.collect

进行词频统计,按单词个数降序排列,执行命令:val wordcount = rdd.flatMap(.split(" ")).map((, 1)).reduceByKey(_ + ).sortBy(._2, false)与`wordcount.collect.foreach(println)

(十)提交Spark应用程序
1、提交语法格式
Spark提供了一个客户端应用程序提交工具spark-submit,使用该工具可以将编写好的Spark应用程序提交到Spark集群。
spark-submit的使用格式如下:$ bin/spark-submit [options] [app options]
options表示传递给spark-submit的控制参数;
app jar表示提交的程序JAR包(或Python脚本文件)所在位置;
app options表示jar程序需要传递的参数,例如main()方法中需要传递的参数。
2、spark-submit常用参数
除了–master参数外,spark-submit还提供了一些控制资源使用和运行时环境的参数。
参数 描述
–master Master节点的连接地址,取值为spark://host:port、mesos://host:port、yarn、k8s://https://host:port 或 local(默认为local[*])
–deploy-mode 提交方式,取值为client或cluster。client表示在本地客户端启动Driver程序,cluster表示在集群内部的工作节点上启动Driver程序,默认为client
–class 应用程序的主类(Java或Scala程序)
–name 应用程序名称,会在Spark Web UI中显示
–jars 应用依赖的第三方JAR包列表,以逗号分隔
–files 需要放到应用工作目录中的文件列表,以逗号分隔。此参数一般用来放需要分发到各节点的数据文件
–conf 设置任意的SparkConf配置属性,格式为“属性名=属性值”
–properties-file 加载外部包含键值对的属性文件。如果不指定,就默认读取Spark安装目录下的conf/spark-defaults.conf 文件中的配置
–driver-memory Driver进程使用的内存量,例如512MB或1GB,单位不区分大小写,默认为1GB
–executor-memory 每个Executor进程所使用的内存量。例如512MB或1GB,单位不区分大小写,默认为1GB
–driver-cores Driver进程使用的CPU核心数,仅在集群模式中使用,默认为1
-executor-cores 每个Executor进程所使用的CPU核心数,默认为1
num-executors Executor进程数量,默认为2。如果开启动态分配,那么初始Executor的数量至少是此参数配置的数量。需要注意的是,此参数仅在Spark On YARN模式中使用
3、案例演示 - 提交Spark自带的圆周率计算程序
进入Spark安装目录

(1)Standalone模式,采用client提交方式
执行下述命令,将Spark自带的求圆周率的程序提交到集群

bin/spark-submit
–class org.apache.spark.examples.SparkPi
–master spark://master:7077
./examples/jars/spark-examples_2.12-3.3.2.jar

提交Spark作业后,观察Spark集群管理界面,其中“Running Applications”列表表示当前Spark集群正在计算的作业,执行几秒后,刷新界面,在Completed Applications表单下,可以看到当前应用执行完毕,返回控制台查看输出信息,出现了“Pi is roughly 3.1424157120785603”,说明Pi值已经被计算完毕。

上述命令中的–master参数指定了Master节点的连接地址。该参数根据不同的Spark集群模式,其取值也有所不同,常用取值如下表所示。

取值 描述
spark://host:port Standalone模式下的Master节点的连接地址,默认端口为7077
yarn 连接到YARN集群。若YARN中没有指定ResourceManager的启动地址,则需要在ResourceManager所在的节点上进行应用程序的提交,否则将因找不到ResourceManager而提交失败
local 运行本地模式,使用1个CPU核心
local [N] 运行本地模式,使用N个CPU核心。例如,local[2]表示使用两个CPU核心运行程序
local[] 运行本地模式,尽可能使用最多的CPU核心
若不添加–master参数,则默认使用本地模式local[
]运行。
(2)Standalone模式,采用cluster提交方式
在Standalone模式下,将Spark自带的圆周率计算程序提交到集群,并且设置Driver进程使用内存为512MB,每个Executor进程使用内存为1GB,每个Executor进程所使用的CPU核心数为2,提交方式为cluster(Driver进程运行在集群的工作节点中),执行命令如下:
bin/spark-submit
–master spark://master:7077
–deploy-mode cluster
–class org.apache.spark.examples.SparkPi
–driver-memory 512m
–executor-memory 1g
–executor-cores 2
./examples/jars/spark-examples_2.12-3.3.2.jar

当然可以写成一行
bin/spark-submit --master spark://master:7077 --deploy-mode cluster --class org.apache.spark.SparkPi --driver-memory 512m --executor-memory 1g --executor-cores 2 ./examples/jars/spark-examples_2.12-3.3.2.jar
1
执行命令后,看到State of driver-20230406114733-0000 is RUNNING,就表明运行成功~,否则会显示State of driver-20230406114733-0000 is FAILED

在Spark WebUI界面上查看运行结果,访问http://master:8080

单击圈红的Worker超链接 - worker-20230406114652-192.168.1.102-36708
注意:必须把私有IP地址改成主机名slave1或者对应的浮动IP地址

单击stdout超链接,可以查看到Pi的计算结果

(十一)停止Spark集群服务
在master节点执行命令:stop-all.sh

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码

)">
< <上一篇
下一篇>>