中缀表达式转后缀表达式与后缀表达式计算(详解)

**中缀表达式转后缀表达式的一般步骤如下:
1:创建一个空的栈和一个空的输出列表。
2:从左到右扫描中缀表达式的每个字符。
3:如果当前字符是操作数,则直接将其加入到输出列表中。
4:如果当前字符是运算符,比较其与栈顶运算符的优先级:

  1. a. 如果栈为空或栈顶运算符是左括号"(“,则直接将当前运算符入栈。
    b. 如果当前运算符的优先级高于栈顶运算符的优先级,则将当前运算符入栈。
    c. 如果当前运算符的优先级低于或等于栈顶运算符的优先级,则将栈顶运算符弹出并加入到输出 列表中,
    直到栈为空或栈顶运算符的优先级低于当前运算符的优先级,然后将当前运算符入栈。
    d. 如果当前字符是右括号”)“,则依次弹出栈中的运算符并加入到输出列表中,
    直到遇到左括号”("为止,此时将左括号出栈且不加入输出列表。

    5:扫描完整个中缀表达式后,将栈中剩余的运算符依次弹出并加入到输出列表中。
    6:输出列表即为转换后的后缀表达式。
    举个例子:
    中缀表达式:2 + 3 * (4 - 1)
    转换为后缀表达式:2 3 4 1 - * +
    具体实现需要根据编程语言和数据结构来进行操作。
    **
    在这里插入图片描述

项目结构
在这里插入图片描述项目头文件结构QueueStorage.h
在这里插入图片描述项目头文件代码

#ifndef LINKSTACK_H
#define LINKSTACK_H
#include <stdio.h>
#include <stdlib.h>
// 链式栈的节点
typedef struct LINKNODE {
	struct LINKNODE* next;
}LinkNode;
// 链式栈
typedef struct LINKSTACK {
	LinkNode head;
	int size;

}LinkStack;


// 初始化函数
LinkStack* Init_LinkStack();
// 入栈
void Push_LinkStack(LinkStack* stack, LinkNode* data);
// 出栈
void Pop_LinkStack(LinkStack* stack);
// 返回栈顶元素
LinkNode* TopLinkStack(LinkStack* stack);
// 返回栈元素的个数
int Size_LinkStack(LinkStack* stack);
// 清空栈
void Clear_LinkStack(LinkStack* stack);
// 销毁栈
void FreeSpace_LinkStack(LinkStack* stack);
#endif

项目cpp文件QueueStorage.cpp
在这里插入图片描述项目cpp文件代码QueueStorage.cpp

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <string.h>
#include "QueueStorage.h"

// 初始化函数
LinkStack* Init_LinkStack() {
    LinkStack* stack = (LinkStack*)malloc(sizeof(LinkStack));
    stack->head.next = NULL;
    stack->size = 0;
    return stack;
};
// 入栈
void Push_LinkStack(LinkStack* stack, LinkNode* data) {
    if (stack == NULL) {
        return;
    }
    if (data == NULL) {
        return;
    }
    // 入栈
    data->next = stack->head.next;
    stack->head.next = data;
    stack->size++;
};
// 出栈
void Pop_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return;
    }
    if (stack->size == 0) {
        return;
    }

    // 第一个有效节点
    LinkNode* pNext = stack->head.next;
    stack->head.next = pNext->next;
    stack->size--;



};
// 返回栈顶元素
LinkNode* TopLinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return NULL;
    }
    if (stack->size == 0) {
        return NULL;
    }
    // 返回栈顶元素
    return stack->head.next;
};

// 返回栈元素的个数
int Size_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return -1;
    }
    return stack->size;
};
// 清空栈
void Clear_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return;
    }
    // 清空栈
    stack->head.next = NULL;
    stack->size = 0;

};
// 销毁栈
void FreeSpace_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return;
    }
    free(stack);
};

项目主文件截图
在这里插入图片描述项目主文件代码main.cpp

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <string.h>
#include "QueueStorage.h"


int IsNumber(char c) {
	return c >= '0' && c <= '9';
}
// 判断是不是左括号
int IsLeft(char c) {
	return c == '(';
}
// 判断是不是右括号
int IsRight(char c) {
	return c == ')';
}
// 判断是不是运算符号
int IsOperator(char c) {
	return c == '+' || c == '-' || c == '*' || c == '/';
}
//返回运算符号的优先级
int GetPriority(char c) {
	if (c == '*' || c == '/') {
		return 2;
	}
	if (c == '+' || c == '-') {
		return 1;
	}
	return 0;
}




//使用企业链表的方式进行实现需要添加结构体
typedef struct MYCHAR {
	LinkNode node;
	char* p;

}MyChar;


// 对于数字的操作
void NumberOperate(char* p) {
	printf("%c", *p);
}
// 创建MyChar
MyChar* CreateMyChar(char* p) {
	MyChar* mychar = (MyChar*)malloc(sizeof(MyChar));
	mychar->p = p;
	return mychar;
}

// 对于左括号的操作
void LeftOperate(LinkStack* stack,char* p) {
	Push_LinkStack(stack, (LinkNode*)CreateMyChar(p));
}
// 对于右括号的操作
void RightOperate(LinkStack* stack) {
	// 判断栈中是否存在元素
	while (Size_LinkStack(stack) > 0) {
		// 将里面的元素取出
		MyChar* mychar = (MyChar*)TopLinkStack(stack);
		// 如果匹配到左括号的话就弹出
		if (IsLeft(*(mychar->p))) {
			Pop_LinkStack(stack);
			break;
		}
		// 输出
		printf("%c", *(mychar->p));
		// 弹出
		Pop_LinkStack(stack);
		// 释放内存
		free(mychar);
	}
}
// 运算符号的操作
void OperatorOperate(LinkStack* stack, char* p) {
		

		// 取出栈顶符号
		MyChar* mychar = (MyChar*)TopLinkStack(stack);
		if (mychar == NULL) {
			Push_LinkStack(stack, (LinkNode*)CreateMyChar(p));
			return;
		}
		// 如果栈顶优先级低于符号的优先级直接入栈
		if (GetPriority(*(mychar->p) < GetPriority(*p))) {
			Push_LinkStack(stack,(LinkNode*)CreateMyChar(p));
			return;
		}
		else {
			// 如果栈顶符号优先级不低
			while (Size_LinkStack(stack) > 0) {

				 MyChar* mychar2 = (MyChar*)TopLinkStack(stack);

				// 如果优先级低当前的符号入栈
				if (GetPriority(*(mychar2->p)) < GetPriority(*p)) {
					Push_LinkStack(stack, (LinkNode*)CreateMyChar(p));
					break;
				}
				// 输出
				printf("%c ", *(mychar2->p));
				// 弹出
				Pop_LinkStack(stack);
				// 释放
				free(mychar2);
			}
		}
}

int main()
{
	/*
	    栈的应用:中缀表达式转后缀表达式

	*/
	char* str = (char *)"8 + (3 - 1) * 5";
	// 遍历字符串
	char* p = str;
	// 创建栈
	LinkStack* stack = Init_LinkStack();

	while (*p != '') {
	     // 判断是否数数字,如果是数字的话直接输出
		if (IsNumber(*p)) {
			NumberOperate(p);
		}
		// 判断是不是左括号,如果是左括号直接进栈
		if (IsLeft(*p)) {
			LeftOperate(stack,p);
		}
		// 如果是右括号的话将栈顶符号弹出知道匹配到左括号为止
		if (IsRight(*p)) {
			RightOperate(stack);
		}

		// 如果是运算符号的话
		if (IsOperator(*p)) {
			OperatorOperate(stack,p);
		}
		p++;
		
	}
	//将栈中剩余的元素弹出并输出
	while (Size_LinkStack(stack) > 0) {
		MyChar* mychar = (MyChar*)TopLinkStack(stack);
		printf("%c", *(mychar->p));
		Pop_LinkStack(stack);
		free(mychar);
	}

	system("pause");
	return 0;
}

修改运行界面
在这里插入图片描述在这里插入图片描述在这里插入图片描述项目运行结果

在这里插入图片描述
后缀表达式相关原理

在这里插入图片描述计算这个后缀表达式"2 3 4 1 - * +"。**

首先,我们从左到右扫描后缀表达式,遇到数字就将其入栈,遇到运算符则将栈顶的两个数字弹出进行计算,然后将结果入栈。
具体计算过程如下:

  1. 将2和3入栈
  2. 遇到4,入栈
  3. 遇到1,入栈
  4. 遇到减号"-",弹出栈顶两个数字1和4,计算4-1=3,将结果3入栈
  5. 遇到乘号"",弹出栈顶两个数字3和3,计算33=9,将结果9入栈
  6. 遇到加号"+",弹出栈顶两个数字9和2,计算9+2=11,将结果11入栈
  7. 后缀表达式扫描结束,栈顶的数字11即为最终的计算结果。

主文件
在这里插入图片描述
主文件截图
在这里插入图片描述主文件代码

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <string.h>
#include "QueueStorage.h"

int IsNumber2(char c) {
    return c >= '0' && c <= '9';
}
typedef struct MYNUM{
    LinkNode node;
    int val;

}MyNum;
int Calculate(int left,int right,char c) {
    int ret = 0;
    switch (c) {
       case '+':
            ret = left + right;
            break;
       case '-':
           ret = left - right;
           break;
       case '*':
           ret = left * right;
           break;
       case '/':
           ret = left / right;
           break;
         default:
            break;
    }
    return ret;
}


int main(void) {
    /*
       根据后缀表达式求解

    */
    char* str = (char *)"831-5*+";
    char* p = str;
    // 创建栈
    LinkStack* stack = Init_LinkStack();
    // 对后缀表达式进行扫描
    while (*p != '') {
        // 如果是数字直接入栈
        if (IsNumber2(*p)) {
            MyNum* num = (MyNum*)malloc(sizeof(MyNum));
            num->val = *p - '0';
            Push_LinkStack(stack,(LinkNode*)num);
        }
        else {
            MyNum* right = (MyNum*)TopLinkStack(stack);
            // 如果是运算符的话,先从栈中弹出右操作数
            int rightNum = right->val;
            Pop_LinkStack(stack);
            free(right);
            // 取出左操作数
            MyNum* left = (MyNum*)TopLinkStack(stack);
            int leftNum = left->val;
            Pop_LinkStack(stack);
            free(left);
            int ret = Calculate(leftNum, rightNum, *p);
            // 结果入栈
            MyNum* num = (MyNum*)malloc(sizeof(MyNum));
            num->val = ret;
            Push_LinkStack(stack, (LinkNode*)num);
        }
        p++;
    }
    if (Size_LinkStack(stack) == 1) {
        MyNum* num = (MyNum*)TopLinkStack(stack);
        printf("运算结果是%dn", num->val);
        Pop_LinkStack(stack);
        free(num);
    }
    // 释放栈
    FreeSpace_LinkStack(stack);
    system("pause");
    return 0;
}

运行结果展示:
在这里插入图片描述

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码

)">
< <上一篇

)">
下一篇>>