自定义Dubbo RPC通信协议

前言

Dubbo 协议层的核心SPI接口是org.apache.dubbo.rpc.Protocol,通过扩展该接口和围绕的相关接口,就可以让 Dubbo 使用我们自定义的协议来通信。默认的协议是 dubbo,本文提供一个 Grpc 协议的实现。

设计思路

Google 提供了 Java 的 Grpc 实现,所以我们站在巨人的肩膀上即可,就不用重复造轮子了。

首先,我们要实现 Protocol 接口,服务暴露时开启我们的 GrpcServer,绑定本地端口,用于后续处理连接和请求。
服务端如何处理grpc请求呢???
方案一,是把暴露的所有服务 Invoker 都封装成grpc的 Service,全部统一让 GrpcServer 处理,但是这么做太麻烦了。方案二,是提供一个 DispatcherService,统一处理客户端发来的grpc请求,再根据参数查找要调用的服务,执行本地调用返回结果。本文采用方案二。
客户端引用服务时,我们创建 GrpcInvoker 对象,和服务端建立连接并生成 DispatcherService 的本地存根 Stub 对象,发起 RPC 调用时只需把 RpcInvocation 转换成 Protobuf 消息发出去即可。

实现GrpcProtocol

项目结构

首先,我们新建一个dubbo-extension-protocol-grpc模块,引入必要的依赖。

<dependencies>
    <dependency>
        <groupId>org.apache.dubbo</groupId>
        <artifactId>dubbo-rpc-api</artifactId>
        <version>${dubbo.version}</version>
    </dependency>
    <dependency>
        <groupId>io.grpc</groupId>
        <artifactId>grpc-all</artifactId>
        <version>1.56.1</version>
    </dependency>
</dependencies>

项目结构:

main
--java
----dubbo.extension.rpc.grpc
------message
--------RequestData.java
--------ResponseData.java
------Codec.java
------DispatcherService.java
------DispatcherServiceGrpc.java
------GrpcExporter.java
------GrpcInvoker.java
------GrpcProtocol.java
------GrpcProtocolServer.java
--resources
----META-INF/dubbo
------org.apache.dubbo.rpc.Protocol

服务&消息定义

然后是定义grpc的 Service 和消息格式
DispatcherService.proto 请求分发服务的定义

syntax = "proto3";

option java_multiple_files = true;
option java_package = "dubbo.extension.rpc.grpc";
option java_outer_classname = "DispatcherServiceProto";
option objc_class_prefix = "HLW";

import "RequestData.proto";
import "ResponseData.proto";

service DispatcherService {
  rpc dispatch (RequestData) returns (ResponseData) {}
}

RequestData.proto 请求消息的定义,主要是对 Invocation 的描述

syntax = "proto3";

option java_multiple_files = true;
option java_package = "dubbo.extension.rpc.grpc.message";
option java_outer_classname = "RequestDataProto";
option objc_class_prefix = "HLW";

message RequestData {
  string targetServiceUniqueName = 1;
  string methodName = 2;
  string serviceName = 3;
  repeated bytes parameterTypes = 4;
  string parameterTypesDesc = 5;
  repeated bytes arguments = 6;
  bytes attachments = 7;
}

ResponseData.proto 响应消息的定义,主要是对 AppResponse 的描述

syntax = "proto3";

option java_multiple_files = true;
option java_package = "dubbo.extension.rpc.grpc.message";
option java_outer_classname = "ResponseataProto";
option objc_class_prefix = "HLW";

message ResponseData {
  int32 status = 1;
  string errorMessage = 2;
  bytes result = 3;
  bytes attachments = 4;
}

使用protobuf-maven-plugin插件把 proto 文件生成对应的 Java 类。

协议实现

新建 GrpcProtocol 类,继承 AbstractProtocol,实现 Protocol 协议细节。
核心是:服务暴露时开启 Grpc 服务,引用服务时生成对应的 Invoker。

public class GrpcProtocol extends AbstractProtocol {

    @Override
    protected <T> Invoker<T> protocolBindingRefer(Class<T> type, URL url) throws RpcException {
        return new GrpcInvoker<>(type, url);
    }

    @Override
    public int getDefaultPort() {
        return 18080;
    }

    @Override
    public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException {
        GrpcExporter<T> exporter = new GrpcExporter<>(invoker);
        exporterMap.put(invoker.getInterface().getName(), exporter);
        openServer(invoker.getUrl());
        return exporter;
    }

    private void openServer(URL url) {
        String key = serviceKey(url);
        ProtocolServer protocolServer = serverMap.get(key);
        if (protocolServer == null) {
            synchronized (serverMap) {
                protocolServer = serverMap.get(key);
                if (protocolServer == null) {
                    serverMap.put(key, createServer(url));
                }
            }
        }
    }

    private ProtocolServer createServer(URL url) {
        return new GrpcProtocolServer(url, exporterMap);
    }
}

新建 GrpcProtocolServer 类实现 ProtocolServer 接口,核心是启动 GrpcServer,并添加 DispatcherService 处理请求。

public class GrpcProtocolServer implements ProtocolServer {

    private final Server server;

    public GrpcProtocolServer(URL url, Map<String, Exporter<?>> exporterMap) {
        server = ServerBuilder.forPort(url.getPort())
                .addService(new DispatcherService(exporterMap))
                .build();
        try {
            server.start();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

    @Override
    public String getAddress() {
        return null;
    }

    @Override
    public void setAddress(String address) {

    }

    @Override
    public void close() {
        server.shutdown();
    }
}

新建 DispatcherService 类实现 Grpc Service,用来处理客户端的grpc请求。核心是把 RequestData 解码成 RpcInvocation,再查找本地 Invoker 调用并返回结果。

public class DispatcherService extends DispatcherServiceGrpc.DispatcherServiceImplBase {

    private final Map<String, Exporter<?>> exporterMap;

    public DispatcherService(Map<String, Exporter<?>> exporterMap) {
        this.exporterMap = exporterMap;
    }

    @Override
    public void dispatch(RequestData request, StreamObserver<ResponseData> responseObserver) {
        RpcInvocation invocation = Codec.decodeInvocation(request);
        ResponseData responseData;
        try {
            Invoker<?> invoker = exporterMap.get(invocation.getServiceName()).getInvoker();
            Object returnValue = invoker.invoke(invocation).get().getValue();
            responseData = Codec.encodeResponse(returnValue, null);
        } catch (Exception e) {
            responseData = Codec.encodeResponse(null, e);
        }
        responseObserver.onNext(responseData);
        responseObserver.onCompleted();
    }
}

新建 GrpcInvoker 类实现 Invoker 接口,服务引用时会创建它,目的是发起 RPC 调用时通过 Stub 发一个请求到 DispatcherService,实现grpc协议的 RPC 调用。

public class GrpcInvoker<T> extends AbstractInvoker<T> {

    private static final Map<String, DispatcherServiceGrpc.DispatcherServiceFutureStub> STUB_MAP = new ConcurrentHashMap<>();

    public GrpcInvoker(Class<T> type, URL url) {
        super(type, url);
    }

    private DispatcherServiceGrpc.DispatcherServiceFutureStub getStub() {
        String key = getUrl().getAddress();
        DispatcherServiceGrpc.DispatcherServiceFutureStub stub = STUB_MAP.get(key);
        if (stub == null) {
            synchronized (STUB_MAP) {
                stub = STUB_MAP.get(key);
                if (stub == null) {
                    STUB_MAP.put(key, stub = createClient(getUrl()));
                }
            }
        }
        return stub;
    }

    private DispatcherServiceGrpc.DispatcherServiceFutureStub createClient(URL url) {
        ManagedChannel channel = ManagedChannelBuilder.forAddress(url.getHost(), url.getPort()).usePlaintext().build();
        return DispatcherServiceGrpc.newFutureStub(channel);
    }

    @Override
    protected Result doInvoke(Invocation invocation) throws Throwable {
        RequestData requestData = Codec.encodeInvocation((RpcInvocation) invocation);
        ResponseData responseData = getStub().dispatch(requestData).get();
        return Codec.decodeResponse(responseData, invocation);
    }
}

最后是编解码器 Codec,它的作用是对 RequestData、ResponseData 对象的编解码。对于请求来说,要编解码的是 RpcInvocation;对于响应来说,要编解码的是返回值和异常信息。
方法实参是 Object[] 类型,附带参数是 Map 类型,本身不能直接通过 Protobuf 传输,我们会先利用 Serialization 序列化成字节数组后再传输。

public class Codec {

    private static final Serialization serialization = ExtensionLoader.getExtensionLoader(Serialization.class).getDefaultExtension();

    public static RequestData encodeInvocation(RpcInvocation invocation) {
        RequestData.Builder builder = RequestData.newBuilder()
                .setTargetServiceUniqueName(invocation.getTargetServiceUniqueName())
                .setMethodName(invocation.getMethodName())
                .setServiceName(invocation.getServiceName());
        for (Class<?> parameterType : invocation.getParameterTypes()) {
            builder.addParameterTypes(serialize(parameterType));
        }
        builder.setParameterTypesDesc(invocation.getParameterTypesDesc());
        for (Object argument : invocation.getArguments()) {
            builder.addArguments(serialize(argument));
        }
        builder.setAttachments(serialize(invocation.getAttachments()));
        return builder.build();
    }

    public static RpcInvocation decodeInvocation(RequestData requestData) {
        RpcInvocation invocation = new RpcInvocation();
        invocation.setTargetServiceUniqueName(requestData.getTargetServiceUniqueName());
        invocation.setMethodName(requestData.getMethodName());
        invocation.setServiceName(requestData.getServiceName());
        List<ByteString> parameterTypesList = requestData.getParameterTypesList();
        Class<?>[] parameterTypes = new Class[parameterTypesList.size()];
        for (int i = 0; i < parameterTypesList.size(); i++) {
            parameterTypes[i] = (Class<?>) deserialize(parameterTypesList.get(i));
        }
        invocation.setParameterTypes(parameterTypes);
        invocation.setParameterTypesDesc(requestData.getParameterTypesDesc());
        List<ByteString> argumentsList = requestData.getArgumentsList();
        Object[] arguments = new Object[argumentsList.size()];
        for (int i = 0; i < argumentsList.size(); i++) {
            arguments[i] = deserialize(argumentsList.get(i));
        }
        invocation.setArguments(arguments);
        invocation.setAttachments((Map<String, String>) deserialize(requestData.getAttachments()));
        return invocation;
    }

    public static Result decodeResponse(ResponseData responseData, Invocation invocation) {
        AppResponse appResponse = new AppResponse();
        if (responseData.getStatus() == 200) {
            appResponse.setValue(deserialize(responseData.getResult()));
            appResponse.setAttachments((Map<String, String>) deserialize(responseData.getAttachments()));
        } else {
            appResponse.setException(new RuntimeException(responseData.getErrorMessage()));
        }
        return new AsyncRpcResult(CompletableFuture.completedFuture(appResponse), invocation);
    }

    private static Object deserialize(ByteString byteString) {
        try {
            InputStream inputStream = new ByteArrayInputStream(byteString.toByteArray());
            ObjectInput objectInput = serialization.deserialize(null, inputStream);
            return objectInput.readObject();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    private static ByteString serialize(Object obj) {
        try {
            ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
            ObjectOutput output = serialization.serialize(null, outputStream);
            output.writeObject(obj);
            output.flushBuffer();
            return ByteString.copyFrom(outputStream.toByteArray());
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    public static ResponseData encodeResponse(Object returnValue, Throwable throwable) {
        ResponseData.Builder builder = ResponseData.newBuilder();
        if (throwable == null) {
            builder.setStatus(200);
            builder.setResult(serialize(returnValue));
            builder.setAttachments(serialize(new HashMap<>()));//先忽略
        } else {
            builder.setStatus(500);
            builder.setErrorMessage(throwable.getMessage());
        }
        return builder.build();
    }
}

实现完毕,最后是让 Dubbo 可以加载到我们自定义的 GrpcProtocol,可以通过 SPI 的方式。新建META-INF/dubbo/org.apache.dubbo.rpc.Protocol文件,内容:

grpc=dubbo.extension.rpc.grpc.GrpcProtocol

服务提供方使用自定义协议:

ProtocolConfig protocolConfig = new ProtocolConfig("grpc", 10880);

消费方使用自定义协议:

ReferenceConfig#setUrl("grpc://127.0.0.1:10880");

尾巴

Protocol 层关心的是如何暴露服务和引用服务,以及如何让双方使用某个具体的协议来通信,以完成 RPC 调用。如果你觉得官方提供的 dubbo 协议无法满足你的业务,就可以通过扩展 Protocol 接口来实现你自己的私有协议。

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇
下一篇>>