【1761行代码】基于stm32f4xx粤嵌GEC-M4的按键密码锁、呼吸灯、蜂鸣器音乐、超声波测距及倒车雷达、温湿度检测、光敏电阻自动灯光调节、USART串口控制系统

【1761行代码】基于stm32f4xx粤嵌GEC-M4的按键密码锁、呼吸灯、蜂鸣器音乐、超声波测距及倒车雷达、温湿度检测、光敏电阻自动灯光调节、USART串口控制系统

前文:
https://blog.csdn.net/weixin_53403301/article/details/121671026?spm=1001.2014.3001.5501
在此基础上增加了光敏电阻自动灯光调节

资源:
https://download.csdn.net/download/weixin_53403301/54203543

第一个循环是按键密码锁 每次按下按键就会有对应LED灯点亮 同时蜂鸣器响一声 输入正确的密码才能进入第二模式 密码是四位 默认4321 输入错误则LED及蜂鸣器报警两次
第二模式即呼吸灯、蜂鸣器播放音乐系统 按键1播放生日快乐 按住按键2实现呼吸灯明暗循环变化 按键3播放Linkin Park的In The End
音乐播放截止前 长按按键1或按键3即能实现循环播放 按键4终止循环
第三模式是温湿度检测及超声波测距系统 通过USART串口显示数据 这里超声波测距模块的TX接到PB8 RX接到PB9
LED的PF10一直随距离变换而闪烁 按键1开启蜂鸣器报警 按键4关闭蜂鸣器 蜂鸣器报警和PF10的闪烁频率相同 距离越近 频率越快 同样此功能可以通过串口输入“S”“Q”来控制
在串口输入L即开启随湿度变化的呼吸灯 湿度越高 呼吸灯越亮 输入E开启流水灯循环 输入D关闭呼吸灯
长按0.5秒按键2则可以实现打断循环 按键3用于终止程序(return 0)
第四模式是光敏电阻的自动灯光调节系统 LED的PF9、PE13和14可以随着光照度变化而自动调节亮度 光照度越高 LED灯光越暗 反之越亮

在这里插入图片描述
代码如下:

# include "stm32f4xx.h"  //stm32库
# include  "GPIO.h"  //引脚宏定义库
# include  "DELAY.h"  //定时器精准延时函数库
# include  "GPIO_BUS.h"  //引脚总线输出库
# include <stdio.h>  //用于串口打印printf

unsigned int  times=0;  //测距计数值
unsigned int	S=0;  //测距结果
int32_t jugg_temp=0;  //判断温湿度获取的参数
uint8_t temp_buf[5]={0};  //温湿度赋值后的数组
static uint16_t tim13_period=0;  //音乐播放模式下 定时器13及PF8复用PWM的定时器分频值
/* PB8=TX PB9=RX */  //超声波测距模块TX接PB8 RX接PB9

//串口打印预设
#pragma import(__use_no_semihosting_swi)
struct __FILE { int handle; /* Add whatever you need here */ };
FILE __stdout;
FILE __stdin;
//串口打印配置函数
int fputc(int ch, FILE *f)  
{
	USART_SendData(USART1,ch);
	while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);
	USART_ClearFlag(USART1,USART_FLAG_TXE);
	
	return ch;
}
//光敏电阻模式下的PWM输出定时器初始化
void init_TIM14_ADC()
{
	GPIO_InitTypeDef  GPIO_InitStructure;            //GPIO结构体设置
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;  //定时器14结构体设置
	TIM_OCInitTypeDef TIM_OCInitStruct;              //定时器PWM结构体设置

	//使能时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM14,ENABLE);
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);

	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;          //LED9 在PF9引脚
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;       //初始化的复用功能(因为本引脚还要用到PWM输出功能)
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
	GPIO_Init(GPIOF, &GPIO_InitStructure);

		//复用映射到定时器14
	GPIO_PinAFConfig(GPIOF,GPIO_PinSource9,GPIO_AF_TIM14);

		//定时器14的配置
	TIM_TimeBaseInitStruct.TIM_Prescaler        = 0; //不进行预分频               
	TIM_TimeBaseInitStruct.TIM_CounterMode      = TIM_CounterMode_Up;
	TIM_TimeBaseInitStruct.TIM_Period           = 100-1;//设置周期为100
	TIM_TimeBaseInitStruct.TIM_ClockDivision    = 0; 
	TIM_TimeBaseInit(TIM14,&TIM_TimeBaseInitStruct);

		//PWM初始化配置
	TIM_OCInitStruct.TIM_OCMode =  TIM_OCMode_PWM1; //模式选择
	TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable;
	TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_Low;  //选择低电平有效
	TIM_OCInitStruct.TIM_Pulse = 0;//配置占空比,满占空比是99
	TIM_OC1Init(TIM14,&TIM_OCInitStruct);

		//使能预装载寄存器
	TIM_OC1PreloadConfig(TIM14, TIM_OCPreload_Enable); 

		//使能自动重装载寄存器
	TIM_ARRPreloadConfig(TIM14,ENABLE);
		//使能TIM14
	TIM_Cmd(TIM14,ENABLE); 
}
//光敏电阻模式下的PWM输出定时器初始化
void init_TIM1_ADC()
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIOE_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE);
	//初始化结构体
	GPIOE_InitStruct.GPIO_Pin  = GPIO_Pin_13; //定义引脚
	GPIOE_InitStruct.GPIO_Mode = GPIO_Mode_AF;  //定义输出模式
	GPIOE_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIOE_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推免输出
	GPIOE_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;		//定义是否有上下拉电阻 普通
	//复用功能 定时器14
	GPIO_PinAFConfig(GPIOE, GPIO_PinSource13, GPIO_AF_TIM1);
	//将结构体给GPIOF组
	GPIO_Init(GPIOE,&GPIOE_InitStruct);
	
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;  //定时器复用功能结构体
	//NVIC_InitTypeDef NVIC_InitStructure;
	/* TIM3 clock enable */ //使能定时器3时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
	//重转载寄存器 定义计数值 决定了计数多少次就进行一次中断 不得大于分频以后的计数值 若改为5000为0.5秒
	TIM_TimeBaseStructure.TIM_Prescaler        = 0; //不进行预分频               
	TIM_TimeBaseStructure.TIM_CounterMode      = TIM_CounterMode_Up;
	TIM_TimeBaseStructure.TIM_Period           = 100-1;//设置周期为100
	TIM_TimeBaseStructure.TIM_ClockDivision    = 0; 
	TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);
	
	TIM_OCInitStructure.TIM_OCMode =  TIM_OCMode_PWM1; //模式选择
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;  //选择低电平有效
	TIM_OCInitStructure.TIM_Pulse = 0;//配置占空比,满占空比是99
	TIM_OC3Init(TIM1,&TIM_OCInitStructure);
	
	//使能OC
	TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);
	

	TIM_ARRPreloadConfig(TIM1,ENABLE);
	TIM_Cmd(TIM1, ENABLE);
	
	//定义GPIO结构体
	//GPIO_InitTypeDef GPIOE_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE);
	//初始化结构体
	GPIOE_InitStruct.GPIO_Pin  = GPIO_Pin_14; //定义引脚
	GPIOE_InitStruct.GPIO_Mode = GPIO_Mode_AF;  //定义输出模式
	GPIOE_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIOE_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推免输出
	GPIOE_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;		//定义是否有上下拉电阻 普通
	//复用功能 定时器14
	GPIO_PinAFConfig(GPIOE, GPIO_PinSource14, GPIO_AF_TIM1);
	//将结构体给GPIOF组
	GPIO_Init(GPIOE,&GPIOE_InitStruct);
	
	//TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	//TIM_OCInitTypeDef  TIM_OCInitStructure;  //定时器复用功能结构体
	//NVIC_InitTypeDef NVIC_InitStructure;
	/* TIM3 clock enable */ //使能定时器3时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
	//重转载寄存器 定义计数值 决定了计数多少次就进行一次中断 不得大于分频以后的计数值 若改为5000为0.5秒
	TIM_TimeBaseStructure.TIM_Prescaler        = 0; //不进行预分频               
	TIM_TimeBaseStructure.TIM_CounterMode      = TIM_CounterMode_Up;
	TIM_TimeBaseStructure.TIM_Period           = 100-1;//设置周期为100
	TIM_TimeBaseStructure.TIM_ClockDivision    = 0; 
	TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);
	//设置中断触发方式 计数更新
	TIM_ITConfig(TIM1,TIM_IT_Update, ENABLE);
	
	TIM_OCInitStructure.TIM_OCMode =  TIM_OCMode_PWM1; //模式选择
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;  //选择低电平有效
	TIM_OCInitStructure.TIM_Pulse = 0;//配置占空比,满占空比是99
	TIM_OC4Init(TIM1, &TIM_OCInitStructure);	//OC4表示通道4 即CH4
	//使能OC
	TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);
	TIM_ARRPreloadConfig(TIM1,ENABLE);
	TIM_Cmd(TIM1, ENABLE);
}
//ADC通道初始化
void init_ADC(void) 
{
	//定义结构体
	GPIO_InitTypeDef  GPIO_InitStructure;
	ADC_CommonInitTypeDef ADC_CommonInitStruct;
	ADC_InitTypeDef ADC_InitStruct;
	//打开ADC3和GPIOF时钟使能
	RCC_AHB1PeriphClockCmd (RCC_AHB1Periph_GPIOF, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC3, ENABLE);  
	/* 初始化ADC3对应的GPIOF引脚 */
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;//模拟输入
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//输入输出频率
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;//配置为不上拉也不下拉
	GPIO_Init(GPIOF, &GPIO_InitStructure);//初始化

	ADC_DeInit();//对ADC进行复位(进行缺省初始化)

	ADC_CommonInitStruct.ADC_DMAAccessMode=ADC_DMAAccessMode_Disabled;//DMA失能
	ADC_CommonInitStruct.ADC_Mode=ADC_Mode_Independent;//独立模式
	ADC_CommonInitStruct.ADC_Prescaler=ADC_Prescaler_Div4;//APB2四分频 即84/4=21MHz
	ADC_CommonInitStruct.ADC_TwoSamplingDelay=ADC_TwoSamplingDelay_5Cycles;//两个采样阶段的延时5个时钟
	ADC_CommonInit(&ADC_CommonInitStruct);//初始化


	ADC_InitStruct.ADC_ContinuousConvMode=DISABLE;//关闭连续AD转换
	ADC_InitStruct.ADC_DataAlign=ADC_DataAlign_Right;//右对齐
	ADC_InitStruct.ADC_ExternalTrigConvEdge=ADC_ExternalTrigConvEdge_None;//禁止使用软件触发检测
	ADC_InitStruct.ADC_NbrOfConversion=5;//设置为通道5
	ADC_InitStruct.ADC_Resolution=ADC_Resolution_8b;//8位精度
	ADC_InitStruct.ADC_ScanConvMode=DISABLE;//非扫描模式
	ADC_Init(ADC3, &ADC_InitStruct);//初始化

	ADC_Cmd(ADC3, ENABLE);//开启ADC
}
 //获取ADC数模转换值的函数
uint16_t  get_ADC(uint8_t ch) //获得某个通道值 
{
	
	ADC_RegularChannelConfig(ADC3, ch, 1, ADC_SampleTime_480Cycles );//ADC3 通道ch 一个序列 采样时间		    

	ADC_SoftwareStartConv(ADC3);//启动ADC转换	
	 
	while(!ADC_GetFlagStatus(ADC3, ADC_FLAG_EOC ));//等待转换结束

	return ADC_GetConversionValue(ADC3);//读取转换结果
}

//温湿度模块初始化
void init_TEMP(void)
{
	//端口G硬件时钟使能
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);	
	
	GPIO_InitTypeDef GPIO_InitStructure;
	//配置PG9为输出模式
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;		//第9根引脚
	GPIO_InitStructure.GPIO_Mode= GPIO_Mode_OUT;	//输出模式
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;	//推挽输出,增加输出电流能力。
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//高速响应
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;	//没有使能上下拉电阻

	GPIO_Init(GPIOG,&GPIO_InitStructure);		
	
	//PG9初始状态为高电平,看时序图
	PG_O(9)=1;
}
//读取温湿度模块
int32_t read_TEMP(uint8_t *pbuf)
{
	uint32_t t=0;
	int32_t i=0,j=0;
	uint8_t d=0;
	uint8_t *p=pbuf;
	uint32_t check_sum=0;
	
	GPIO_InitTypeDef GPIO_InitStructure;
	//---------------------通信开始的第一部分,主机信号
	//PG9设置为输出模式
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;		//第9根引脚
	GPIO_InitStructure.GPIO_Mode= GPIO_Mode_OUT;	//输出模式
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;	//推挽输出,增加输出电流能力。
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//高速响应
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;	//没有使能上下拉电阻

	GPIO_Init(GPIOG,&GPIO_InitStructure);	
	
	PG_O(9)=0;
	delay_ms(20);
	
	PG_O(9)=1;
	delay_us(30);	
	
	//-----通信开始的第二部分,DHT信号
	//PG9设置为输入模式
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;		//第9根引脚
	GPIO_InitStructure.GPIO_Mode= GPIO_Mode_IN;		//输入模式
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//高速响应
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;	//没有使能上下拉电阻

	GPIO_Init(GPIOG,&GPIO_InitStructure);	

	//等待低电平出现
	t=0;
	while(PG_I(9))
	{
		t++;
		
		delay_us(1);
		
		if(t>=4000)
			return -1;
	}
	
	//测量低电平合法性
	t=0;
	while(PG_I(9)==0)
	{
		t++;
		
		delay_us(1);
		
		if(t>=1000)
			return -2;
	}

	//测量高电平合法性
	t=0;
	while(PG_I(9))
	{
		t++;
		delay_us(1);
		if(t>=1000)
			return -3;
	}
	
	//数据0和1的读取
	for(j=0; j<5; j++)
	{
		d=0;
		//一个字节的接收,从最高有效位开始接收
		for(i=7; i>=0; i--)
		{
			//等待数据0/数据1的前置低电平持续完毕
			t=0;
			while(PG_I(9)==0)
			{
				t++;
				delay_us(1);				
				if(t>=1000)
					return -4;
			}

			//延时40us
			delay_us(40);
		
			//判断当前PG9是否为高电平还是低电平
			//若是高电平,则为数据1;
			//若是低电平,则为数据0;
			if(PG_I(9))
			{
				d|=1<<i;//将变量d对应的比特位置1,如i=7,d|=1<<7就是将变量d的bit7置1
			
				//等待高电平持续完毕
				t=0;
				while(PG_I(9))
				{
					t++;
					delay_us(1);
					if(t>=1000)
						return -5;
				}		
			}
		}
		p[j]=d;	
	}
	
	//校验和
	check_sum = (p[0]+p[1]+p[2]+p[3])&0xFF;
	if(p[4] != check_sum)
		return -6;
	
	return 0;
}
//按键初始化
void init_KEEY(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIO_KEEY_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
	//初始化结构体
	GPIO_KEEY_InitStruct.GPIO_Pin  = GPIO_Pin_0; //定义引脚
	GPIO_KEEY_InitStruct.GPIO_Mode = GPIO_Mode_IN;  //定义输出模式
	GPIO_KEEY_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIO_KEEY_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOF组
	GPIO_Init(GPIOA,&GPIO_KEEY_InitStruct);
	
	GPIO_KEEY_InitStruct.GPIO_Pin  = GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4;
	GPIO_Init(GPIOE,&GPIO_KEEY_InitStruct);
}
//蜂鸣器初始化
void init_BEEP(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIOF_BEEP_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);
	//初始化结构体
	GPIOF_BEEP_InitStruct.GPIO_Pin  = GPIO_Pin_8; //定义引脚
	GPIOF_BEEP_InitStruct.GPIO_Mode = GPIO_Mode_OUT;  //定义输出模式
	GPIOF_BEEP_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIOF_BEEP_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推挽输出
	GPIOF_BEEP_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOF组
	GPIO_Init(GPIOF,&GPIOF_BEEP_InitStruct);
}
//关闭BEEP
void close_BEEP(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIOF_BEEP_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);
	//初始化结构体
	GPIOF_BEEP_InitStruct.GPIO_Pin  = GPIO_Pin_8; //定义引脚
	GPIOF_BEEP_InitStruct.GPIO_Mode = GPIO_Mode_IN;  //定义输出模式
	GPIOF_BEEP_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIOF_BEEP_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推挽输出
	GPIOF_BEEP_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOF组
	GPIO_Init(GPIOF,&GPIOF_BEEP_InitStruct);
}
//两个引脚整体初始化函数
void init_GPIO_EF_OUT(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIO_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE);
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);
	//初始化结构体
	GPIO_InitStruct.GPIO_Pin  = GPIO_Pin_9 | GPIO_Pin_10; //定义引脚
	GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;  //定义输出模式
	GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推挽输出
	GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOF组
	GPIO_Init(GPIOF,&GPIO_InitStruct);
	
	GPIO_InitStruct.GPIO_Pin  = GPIO_Pin_13 | GPIO_Pin_14; //定义引脚
	//将结构体给GPIOE组
	GPIO_Init(GPIOE,&GPIO_InitStruct);
}
//串口初始化函数
void init_USART1(unsigned int Baud)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIO_KEEY_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
	//初始化结构体
	GPIO_KEEY_InitStruct.GPIO_Pin  = GPIO_Pin_9 | GPIO_Pin_10; //定义引脚
	GPIO_KEEY_InitStruct.GPIO_Mode = GPIO_Mode_AF;  //定义输出模式
	GPIO_KEEY_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIO_KEEY_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推挽输出
	GPIO_KEEY_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOF组
	GPIO_Init(GPIOA,&GPIO_KEEY_InitStruct);
	
	GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_USART1);  //复用功能
	GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_USART1);  //复用功能
	
	USART_InitTypeDef USART_InitStructure;
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
	//配置串口
	USART_InitStructure.USART_BaudRate = Baud;  //波特率
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;  //8位数据位
	USART_InitStructure.USART_StopBits = USART_StopBits_1;  //1个停止位
  USART_InitStructure.USART_Parity = USART_Parity_No;  //无校验位
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;  //无硬件流控制
	USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;  //支持收发数据
	USART_Init(USART1, &USART_InitStructure);
	//中断方式
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);  //使能RX

	//中断优先级
	NVIC_InitTypeDef NVIC_InitStructure;
 
   /* Enable the USARTx Interrupt */
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_Init(&NVIC_InitStructure);
	//使能串口
	USART_Cmd(USART1, ENABLE);
}
//GPIOB_8初始化使能
void init_TX(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIO_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
	//初始化结构体
	GPIO_InitStruct.GPIO_Pin  = GPIO_Pin_8; //定义引脚
	GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;  //定义输出模式
	GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推免输出
	GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOB组
	GPIO_Init(GPIOB,&GPIO_InitStruct);
}
//GPIOB_9初始化使能
void init_RX(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIO_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
	//初始化结构体
	GPIO_InitStruct.GPIO_Pin  = GPIO_Pin_9; //定义引脚
	GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN;  //定义输出模式
	GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOB组
	GPIO_Init(GPIOB,&GPIO_InitStruct);
}
//定时器14及PF9复用PWM初始化
void init_TIM14_PF9(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIOF_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);
	//初始化结构体
	GPIOF_InitStruct.GPIO_Pin  = GPIO_Pin_9; //定义引脚
	GPIOF_InitStruct.GPIO_Mode = GPIO_Mode_AF;  //定义输出模式
	GPIOF_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIOF_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推免输出
	GPIOF_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;		//定义是否有上下拉电阻 普通
	//复用功能 定时器14
	GPIO_PinAFConfig(GPIOF, GPIO_PinSource9, GPIO_AF_TIM14);
	//将结构体给GPIOF组
	GPIO_Init(GPIOF,&GPIOF_InitStruct);
	
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;  //定时器复用功能结构体
	//NVIC_InitTypeDef NVIC_InitStructure;
	/* TIM3 clock enable */ //使能定时器3时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM14, ENABLE);
	//重转载寄存器 定义计数值 决定了计数多少次就进行一次中断 不得大于分频以后的计数值 若改为5000为0.5秒
	TIM_TimeBaseStructure.TIM_Period = 100-1;  //10ms周期
	TIM_TimeBaseStructure.TIM_Prescaler = 8400-1;  //定时器预分频 168000000/2/8400=10000 其值系统默认+1 每10000次计数为1秒
	TIM_TimeBaseStructure.TIM_ClockDivision = 0;  //选择计数模式 向上计数
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数
	TIM_TimeBaseInit(TIM14, &TIM_TimeBaseStructure);
	//设置中断触发方式 计数更新
	TIM_ITConfig(TIM14,TIM_IT_Update, ENABLE);
	
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;  //PWM模式1  有效状态为小于计数的比较值时
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;  //输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;  //设置比较值 小于x时为有效 总计数值为100 周期为10ms
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;  //有效状态为高电平
	//输出化OC
	TIM_OC1Init(TIM14, &TIM_OCInitStructure);
	//使能OC
	TIM_OC1PreloadConfig(TIM14, TIM_OCPreload_Enable);
	
//	NVIC_InitTypeDef NVIC_InitStruct;
//	NVIC_InitStruct.NVIC_IRQChannel = TIM8_TRG_COM_TIM14_IRQn;
//	NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0; //中断抢占优先级
//	NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1; //响应优先级
//	NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;  //这一项关闭的话 定时器也会关闭
//	NVIC_Init(&NVIC_InitStruct);
	
	TIM_Cmd(TIM14, ENABLE);
	TIM_CtrlPWMOutputs(TIM14,ENABLE);		//使能PWM输出控制
}
//定时器1及PE13复用PWM初始化
void init_TIM1_PE13(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIOE_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE);
	//初始化结构体
	GPIOE_InitStruct.GPIO_Pin  = GPIO_Pin_13; //定义引脚
	GPIOE_InitStruct.GPIO_Mode = GPIO_Mode_AF;  //定义输出模式
	GPIOE_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIOE_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推免输出
	GPIOE_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;		//定义是否有上下拉电阻 普通
	//复用功能 定时器14
	GPIO_PinAFConfig(GPIOE, GPIO_PinSource13, GPIO_AF_TIM1);
	//将结构体给GPIOF组
	GPIO_Init(GPIOE,&GPIOE_InitStruct);
	
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;  //定时器复用功能结构体
	//NVIC_InitTypeDef NVIC_InitStructure;
	/* TIM3 clock enable */ //使能定时器3时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
	//重转载寄存器 定义计数值 决定了计数多少次就进行一次中断 不得大于分频以后的计数值 若改为5000为0.5秒
	TIM_TimeBaseStructure.TIM_Period = 100-1;  //10ms周期
	TIM_TimeBaseStructure.TIM_Prescaler = 8400-1;  //定时器预分频 168000000/2/8400=10000 其值系统默认+1 每10000次计数为1秒
	TIM_TimeBaseStructure.TIM_ClockDivision = 0;  //选择计数模式 向上计数
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数
	TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
	//设置中断触发方式 计数更新
	TIM_ITConfig(TIM1,TIM_IT_Update, ENABLE);
	
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;  //PWM模式1  有效状态为小于计数的比较值时
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;  //输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;  //设置比较值 小于x时为有效 总计数值为100 周期为10ms
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;  //有效状态为高电平
	//输出化OC
	TIM_OC3Init(TIM1, &TIM_OCInitStructure);	//OC3表示通道3 即CH3
	//使能OC
	TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);
	
//	NVIC_InitTypeDef NVIC_InitStruct;
//	NVIC_InitStruct.NVIC_IRQChannel = TIM8_TRG_COM_TIM14_IRQn;
//	NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0; //中断抢占优先级
//	NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1; //响应优先级
//	NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;  //这一项关闭的话 定时器也会关闭
//	NVIC_Init(&NVIC_InitStruct);
	
	TIM_Cmd(TIM1, ENABLE);
	TIM_CtrlPWMOutputs(TIM1,ENABLE);		//使能PWM输出控制
}
//定时器1及PE14复用PWM初始化
void init_TIM1_PE14(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIOE_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE);
	//初始化结构体
	GPIOE_InitStruct.GPIO_Pin  = GPIO_Pin_14; //定义引脚
	GPIOE_InitStruct.GPIO_Mode = GPIO_Mode_AF;  //定义输出模式
	GPIOE_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIOE_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推免输出
	GPIOE_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;		//定义是否有上下拉电阻 普通
	//复用功能 定时器14
	GPIO_PinAFConfig(GPIOE, GPIO_PinSource14, GPIO_AF_TIM1);
	//将结构体给GPIOF组
	GPIO_Init(GPIOE,&GPIOE_InitStruct);
	
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;  //定时器复用功能结构体
	//NVIC_InitTypeDef NVIC_InitStructure;
	/* TIM3 clock enable */ //使能定时器3时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
	//重转载寄存器 定义计数值 决定了计数多少次就进行一次中断 不得大于分频以后的计数值 若改为5000为0.5秒
	TIM_TimeBaseStructure.TIM_Period = 100-1;  //10ms周期
	TIM_TimeBaseStructure.TIM_Prescaler = 8400-1;  //定时器预分频 168000000/2/8400=10000 其值系统默认+1 每10000次计数为1秒
	TIM_TimeBaseStructure.TIM_ClockDivision = 0;  //选择计数模式 向上计数
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数
	TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
	//设置中断触发方式 计数更新
	TIM_ITConfig(TIM1,TIM_IT_Update, ENABLE);
	
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;  //PWM模式1  有效状态为小于计数的比较值时
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;  //输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;  //设置比较值 小于x时为有效 总计数值为100 周期为10ms
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;  //有效状态为高电平
	//输出化OC
	TIM_OC4Init(TIM1, &TIM_OCInitStructure);	//OC4表示通道4 即CH4
	//使能OC
	TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);
	
//	NVIC_InitTypeDef NVIC_InitStruct;
//	NVIC_InitStruct.NVIC_IRQChannel = TIM8_TRG_COM_TIM14_IRQn;
//	NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0; //中断抢占优先级
//	NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1; //响应优先级
//	NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;  //这一项关闭的话 定时器也会关闭
//	NVIC_Init(&NVIC_InitStruct);
	
	TIM_Cmd(TIM1, ENABLE);
	TIM_CtrlPWMOutputs(TIM1,ENABLE);		//使能PWM输出控制
}
//定时器13及PF8复用PWM初始化
void init_TIM13_PF8_F(uint32_t freq)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIOF_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);
	//初始化结构体
	GPIOF_InitStruct.GPIO_Pin  = GPIO_Pin_8; //定义引脚
	GPIOF_InitStruct.GPIO_Mode = GPIO_Mode_AF;  //定义输出模式
	GPIOF_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIOF_InitStruct.GPIO_OType = GPIO_OType_PP;		//定义推免输出
	GPIOF_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;		//定义是否有上下拉电阻 普通
	//复用功能 定时器14
	GPIO_PinAFConfig(GPIOF, GPIO_PinSource8, GPIO_AF_TIM13);
	//将结构体给GPIOF组
	GPIO_Init(GPIOF,&GPIOF_InitStruct);
	
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;  //定时器复用功能结构体
	//NVIC_InitTypeDef NVIC_InitStructure;
	/* TIM3 clock enable */ //使能定时器3时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM13, ENABLE);
	//重转载寄存器 定义计数值 决定了计数多少次就进行一次中断 不得大于分频以后的计数值 若改为5000为0.5秒
	TIM_TimeBaseStructure.TIM_Period = (10000/freq)-1;  //10ms周期
	tim13_period = TIM_TimeBaseStructure.TIM_Period;
	TIM_TimeBaseStructure.TIM_Prescaler = 8400-1;  //定时器预分频 168000000/2/8400=10000 其值系统默认+1 每10000次计数为1秒
	TIM_TimeBaseStructure.TIM_ClockDivision = 0;  //选择计数模式 向上计数
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数
	TIM_TimeBaseInit(TIM13, &TIM_TimeBaseStructure);
	//设置中断触发方式 计数更新
	TIM_ITConfig(TIM13,TIM_IT_Update, ENABLE);
	
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;  //PWM模式1  有效状态为小于计数的比较值时
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;  //输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;  //设置比较值 小于x时为有效 总计数值为100 周期为10ms
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;  //有效状态为高电平
	//输出化OC
	TIM_OC1Init(TIM13, &TIM_OCInitStructure);
	//使能OC
	TIM_OC1PreloadConfig(TIM13, TIM_OCPreload_Enable);

//	NVIC_InitTypeDef NVIC_InitStruct;
//	NVIC_InitStruct.NVIC_IRQChannel = TIM8_UP_TIM13_IRQn;
//	NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0; //中断抢占优先级
//	NVIC_InitStruct.NVIC_IRQChannelSubPriority = 2; //响应优先级
//	NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;  //这一项关闭的话 定时器也会关闭
//	NVIC_Init(&NVIC_InitStruct);
	
	TIM_Cmd(TIM13, ENABLE);
}
//设置定时器13的PWM占空比
//0%~100%  0.0 ~ 1
void TIM13_Set_duty(uint16_t duty)
{
	uint32_t cmp=0;
	
	cmp = (tim13_period+1)*duty/100;//比较值
	
	TIM_SetCompare1(TIM13,cmp);
}
//定时器3初始化
void init_TIM3_RX(void)
{
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	//TIM_OCInitTypeDef  TIM_OCInitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	/* TIM3 clock enable */ //使能定时器3时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
	//重转载寄存器 定义计数值 决定了计数多少次就进行一次中断 不得大于分频以后的计数值 若改为5000为0.5秒
	TIM_TimeBaseStructure.TIM_Period = 2-1;  
	TIM_TimeBaseStructure.TIM_Prescaler = 84-1;  //定时器预分频 168000000/2/84=1000000 其值系统默认+1 每1000000次计数为1秒
	TIM_TimeBaseStructure.TIM_ClockDivision = 0;  //选择计数模式 向上计数
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数
	TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
	//设置中断触发方式 计数更新
	TIM_ITConfig(TIM3,TIM_IT_Update, ENABLE);
	
	/* Enable the TIM3 gloabal Interrupt *///使能定时器3的中断通道
	NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_Init(&NVIC_InitStructure);
	//使能定时器3
	TIM_Cmd(TIM3, DISABLE);
}
//定时器2初始化
void init_TIM2_TX(void)
{
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	//TIM_OCInitTypeDef  TIM_OCInitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	/* TIM2 clock enable */ //使能定时器2时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
	//重转载寄存器 定义计数值 决定了计数多少次就进行一次中断 不得大于分频以后的计数值 若改为5000为0.5秒
	TIM_TimeBaseStructure.TIM_Period = 5000-1;  
	TIM_TimeBaseStructure.TIM_Prescaler = 8400-1;  //定时器预分频 168000000/2/8400=10000 其值系统默认+1 每10000次计数为1秒
	TIM_TimeBaseStructure.TIM_ClockDivision = 0;  //选择计数模式 向上计数
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
	//设置中断触发方式 计数更新
	TIM_ITConfig(TIM2,TIM_IT_Update, ENABLE);
	
	/* Enable the TIM2 gloabal Interrupt *///使能定时器2的中断通道
	NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_Init(&NVIC_InitStructure);
	//使能定时器2
	TIM_Cmd(TIM2, ENABLE);
}
//定时器4初始化
void init_TIM4_Warning(unsigned int tim)
{
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	//TIM_OCInitTypeDef  TIM_OCInitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	/* TIM3 clock enable */ //使能定时器3时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);
	//重转载寄存器 定义计数值 决定了计数多少次就进行一次中断 不得大于分频以后的计数值 若改为5000为0.5秒
	TIM_TimeBaseStructure.TIM_Period = tim-1;  
	TIM_TimeBaseStructure.TIM_Prescaler = 8400-1;  //定时器预分频 168000000/2/84=10000 其值系统默认+1 每10000次计数为1秒
	TIM_TimeBaseStructure.TIM_ClockDivision = 0;  //选择计数模式 向上计数
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数
	TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);
	//设置中断触发方式 计数更新
	TIM_ITConfig(TIM4,TIM_IT_Update, ENABLE);
	
	/* Enable the TIM3 gloabal Interrupt *///使能定时器3的中断通道
	NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_Init(&NVIC_InitStructure);
	//使能定时器4
	TIM_Cmd(TIM4, ENABLE);
}
//外部中断0初始化 PA0
void init_EXTI0(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIO_KEEY_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
	//初始化结构体
	GPIO_KEEY_InitStruct.GPIO_Pin  = GPIO_Pin_0; //定义引脚
	GPIO_KEEY_InitStruct.GPIO_Mode = GPIO_Mode_IN;  //定义输出模式
	GPIO_KEEY_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIO_KEEY_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOF组
	GPIO_Init(GPIOA,&GPIO_KEEY_InitStruct);
	//选择中断线 中断0 PA组
	SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA,EXTI_PinSource0); 
	//使能中断时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); 
	//配置中断
	EXTI_InitTypeDef EXTI_InitStruct;
	EXTI_InitStruct.EXTI_Line = EXTI_Line0;
	EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt;
	EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Falling; //下降沿触发
	EXTI_InitStruct.EXTI_LineCmd = ENABLE;
	EXTI_Init(&EXTI_InitStruct);
	//嵌套向量中断控制器 
	NVIC_InitTypeDef NVIC_InitStruct;
	NVIC_InitStruct.NVIC_IRQChannel = EXTI0_IRQn;
	NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0x0; //中断抢占优先级
	NVIC_InitStruct.NVIC_IRQChannelSubPriority = 0x0; //响应优先级
	NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;
	NVIC_Init(&NVIC_InitStruct);
}
//外部中断4初始化 PE4
void init_EXTI4(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIO_KEEY_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE);
	//初始化结构体
	GPIO_KEEY_InitStruct.GPIO_Pin  = GPIO_Pin_4; //定义引脚
	GPIO_KEEY_InitStruct.GPIO_Mode = GPIO_Mode_IN;  //定义输出模式
	GPIO_KEEY_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIO_KEEY_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOF组
	GPIO_Init(GPIOE,&GPIO_KEEY_InitStruct);
	//选择中断线 中断0 PA组
	SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOE,EXTI_PinSource4); 
	//使能中断时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); 
	//配置中断
	EXTI_InitTypeDef EXTI_InitStruct;
	EXTI_InitStruct.EXTI_Line = EXTI_Line4;
	EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt;
	EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Falling; //下降沿触发
	EXTI_InitStruct.EXTI_LineCmd = ENABLE;
	EXTI_Init(&EXTI_InitStruct);
	
	//嵌套向量中断控制器 
	NVIC_InitTypeDef NVIC_InitStruct;
	NVIC_InitStruct.NVIC_IRQChannel = EXTI4_IRQn;
	NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0x0; //中断抢占优先级
	NVIC_InitStruct.NVIC_IRQChannelSubPriority = 0x0; //响应优先级
	NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;
	NVIC_Init(&NVIC_InitStruct);
}
//关闭外部中断0初始化 PA0
void close_EXTI0(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIO_KEEY_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
	//初始化结构体
	GPIO_KEEY_InitStruct.GPIO_Pin  = GPIO_Pin_0; //定义引脚
	GPIO_KEEY_InitStruct.GPIO_Mode = GPIO_Mode_IN;  //定义输出模式
	GPIO_KEEY_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIO_KEEY_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOF组
	GPIO_Init(GPIOA,&GPIO_KEEY_InitStruct);
	//选择中断线 中断0 PA组
	SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA,EXTI_PinSource0); 
	//使能中断时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); 
	//配置中断
	EXTI_InitTypeDef EXTI_InitStruct;
	EXTI_InitStruct.EXTI_Line = EXTI_Line0;
	EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt;
	EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Falling; //下降沿触发
	EXTI_InitStruct.EXTI_LineCmd = DISABLE;  //关闭外部中断
	EXTI_Init(&EXTI_InitStruct);
}
//关闭中断4初始化 PE4
void close_EXTI4(void)
{
	//定义GPIO结构体
	GPIO_InitTypeDef GPIO_KEEY_InitStruct;
	//使能GPIOF时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE);
	//初始化结构体
	GPIO_KEEY_InitStruct.GPIO_Pin  = GPIO_Pin_4; //定义引脚
	GPIO_KEEY_InitStruct.GPIO_Mode = GPIO_Mode_IN;  //定义输出模式
	GPIO_KEEY_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;	//定义速度
	GPIO_KEEY_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;		//定义是否有上下拉电阻 普通
	//将结构体给GPIOF组
	GPIO_Init(GPIOE,&GPIO_KEEY_InitStruct);
	//选择中断线 中断0 PA组
	SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOE,EXTI_PinSource4); 
	//使能中断时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); 
	//配置中断
	EXTI_InitTypeDef EXTI_InitStruct;
	EXTI_InitStruct.EXTI_Line = EXTI_Line4;
	EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt;
	EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Falling; //下降沿触发
	EXTI_InitStruct.EXTI_LineCmd = DISABLE;  //关闭外部中断
	EXTI_Init(&EXTI_InitStruct);
}
//主循环函数
void mainloop(void)
{
	init_GPIO_EF_OUT();
	init_BEEP();
	init_KEEY();
	
	int y;
	int flag=0;
	delay_ms(500);
	
	while(1)//按键锁循环
	{
		int buf[4];
		uint8_t key0 = GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0);
		uint8_t key1 = GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_2);
		uint8_t key2 = GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_3);
		uint8_t key3 = GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_4);
		GPIO_SetBits(GPIOF,GPIO_Pin_9);
		GPIO_SetBits(GPIOF,GPIO_Pin_10);
		GPIO_SetBits(GPIOE,GPIO_Pin_13);
		GPIO_SetBits(GPIOE,GPIO_Pin_14);
		PF_O(8)=0;
		
		if( key0 == Bit_RESET)
		{
			y=0;
			flag++;
			while(1){GPIO_ResetBits(GPIOF,GPIO_Pin_9);PF_O(8)=1;
				uint8_t key0 = GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0);
				if(key0 == Bit_SET)GPIO_SetBits(GPIOF,GPIO_Pin_9);break;}
			delay_ms(200);PF_O(8)=0;PF_O(9)=1;
		}
		if( key1 == Bit_RESET)
		{
			y=1;
			flag++;
			while(1){GPIO_ResetBits(GPIOF,GPIO_Pin_10);PF_O(8)=1;
				uint8_t key1 = GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_2);
				if(key1 == Bit_SET)GPIO_SetBits(GPIOF,GPIO_Pin_10);break;}
			delay_ms(200);PF_O(8)=0;PF_O(10)=1;
		}
		if( key2 == Bit_RESET)
		{
			y=2;
			flag++;
			while(1){GPIO_ResetBits(GPIOE,GPIO_Pin_13);PF_O(8)=1;
				uint8_t key2 = GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_3);
				if(key2 == Bit_SET)GPIO_SetBits(GPIOE,GPIO_Pin_13);break;}
			delay_ms(200);PF_O(8)=0;PE_O(13)=1;
		}
		if( key3 == Bit_RESET)
		{
			y=3;
			flag++;
			while(1){GPIO_ResetBits(GPIOE,GPIO_Pin_14);PF_O(8)=1;
				uint8_t key3 = GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_4);
				if(key3 == Bit_SET)GPIO_SetBits(GPIOE,GPIO_Pin_14);break;}
			delay_ms(200);PF_O(8)=0;PE_O(14)=1;
		}
		if (flag >= 1){buf[flag-1]=y;}
		if (flag == 4){
			buf[flag-1]=y;flag=0;
			if (buf[0]==3 && buf[1]==2 && buf[2]==1 && buf[3]==0)
			{
				PF_O(9)=1;PF_O(10)=1;PE_O(13)=1;PE_O(14)=1;PF_O(8)=0;
				delay_ms(200);	
				PF_O(9)=0;PF_O(10)=0;PE_O(13)=0;PE_O(14)=0;PF_O(8)=1;
				delay_ms(200);
				break;
			}
			else if (buf[0]!=3 | buf[1]!=2 | buf[2]!=1 | buf[3]==0){
				PF_O(9)=1;PF_O(10)=1;PE_O(13)=1;PE_O(14)=1;PF_O(8)=0;
				delay_ms(200);
				PF_O(9)=0;PF_O(10)=0;PE_O(13)=0;PE_O(14)=0;PF_O(8)=1;
				delay_ms(200);
				PF_O(9)=1;PF_O(10)=1;PE_O(13)=1;PE_O(14)=1;PF_O(8)=0;
				delay_ms(200);
				PF_O(9)=0;PF_O(10)=0;PE_O(13)=0;PE_O(14)=0;PF_O(8)=1;
				delay_ms(200);
				PF_O(9)=1;PF_O(10)=1;PE_O(13)=1;PE_O(14)=1;PF_O(8)=0;
				delay_ms(200);
			}
		}	
	}
	PF_O(8)=0;
	init_TIM14_PF9();
	init_TIM1_PE13();
	init_TIM1_PE14();
	PF_O(9)=1;PF_O(10)=1;PE_O(13)=1;PE_O(14)=1;
	TIM_SetCompare1(TIM14,100);  //设置比较值
	TIM_SetCompare3(TIM1,100);
	TIM_SetCompare4(TIM1,100);
	int PWM;
	TIM_Cmd(TIM13, DISABLE);
	while(1)  //呼吸灯及播放音乐
	{	
		if(PE_I(4)==0)
		{
			TIM_Cmd(TIM13, DISABLE);
			TIM_Cmd(TIM14, DISABLE);
			TIM_Cmd(TIM1, DISABLE);
			close_BEEP();
			break;
		}
		while(PE_I(3)==0)
		{
			init_TIM13_PF8_F(880);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1318);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1318);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1046);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(988);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(988);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(988);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(988);
			TIM13_Set_duty(25);
			delay_ms(250);
			init_TIM13_PF8_F(1046);
			TIM13_Set_duty(25);
			delay_ms(250);
			if(PE_I(3)==1)TIM13_Set_duty(0);break;
		}
		
		while(PA_I(0)==0)
		{
			init_TIM13_PF8_F(784*2/3);
			TIM13_Set_duty(25);
			delay_ms(250);
			init_TIM13_PF8_F(784*2/3);
			TIM13_Set_duty(25);
			delay_ms(250);
			init_TIM13_PF8_F(880*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(784*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1046*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(987*2/3);
			TIM13_Set_duty(25);
			delay_ms(1000);
			
			init_TIM13_PF8_F(784*2/3);
			TIM13_Set_duty(25);
			delay_ms(250);
			init_TIM13_PF8_F(784*2/3);
			TIM13_Set_duty(25);
			delay_ms(250);
			init_TIM13_PF8_F(880*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(784*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1175*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1046*2/3);
			TIM13_Set_duty(25);
			delay_ms(1000);
			
			init_TIM13_PF8_F(784*2/3);
			TIM13_Set_duty(25);
			delay_ms(250);
			init_TIM13_PF8_F(784*2/3);
			TIM13_Set_duty(25);
			delay_ms(250);
			init_TIM13_PF8_F(1568*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1318*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1046*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(987*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(880*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			delay_ms(500);
			
			init_TIM13_PF8_F(1397*2/3);
			TIM13_Set_duty(25);
			delay_ms(250);
			init_TIM13_PF8_F(1397*2/3);
			TIM13_Set_duty(25);
			delay_ms(250);
			init_TIM13_PF8_F(1318*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1046*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1175*2/3);
			TIM13_Set_duty(25);
			delay_ms(500);
			init_TIM13_PF8_F(1046*2/3);
			TIM13_Set_duty(25);
			delay_ms(2000);
			if(PA_I(0)==1)TIM13_Set_duty(0);break;
		}

		while(PE_I(2)==0)
		{
			for(PWM=100;PWM>0;PWM--)
			{
				TIM_SetCompare1(TIM14,100-PWM);  //设置比较值
				TIM_SetCompare3(TIM1,100-PWM);
				TIM_SetCompare4(TIM1,100-PWM);
				delay_ms(10);
				if(PE_I(2)==1)
				{
					TIM_SetCompare1(TIM14,100);  //设置比较值
					TIM_SetCompare3(TIM1,100);
					TIM_SetCompare4(TIM1,100);
					break;
				}
			}
			for(PWM=0;PWM<100;PWM++)
			{
				TIM_SetCompare1(TIM14,100-PWM);  //设置比较值
				TIM_SetCompare3(TIM1,100-PWM);
				TIM_SetCompare4(TIM1,100-PWM);
				delay_ms(10);
				if(PE_I(2)==1)
				{
					TIM_SetCompare1(TIM14,100);  //设置比较值
					TIM_SetCompare3(TIM1,100);
					TIM_SetCompare4(TIM1,100);
					break;
				}
			}
			if(PE_I(2)==1)
			{
				TIM_SetCompare1(TIM14,100);  //设置比较值
				TIM_SetCompare3(TIM1,100);
				TIM_SetCompare4(TIM1,100);
				break;
			}
		}
	}
}
//温湿度及距离测量
void Count(void)
{
	S=times*2*0.17;  //单位 mm
	if(jugg_temp == 0)
	{
		TIM_SetCompare1(TIM14,100-temp_buf[0]);  //设置比较值
		TIM_SetCompare3(TIM1,100-temp_buf[0]);
		TIM_SetCompare4(TIM1,100-temp_buf[0]);
		if(S==0)
		{
			printf(" 距离测量失败	|		| 温度:%d.%d℃	| 湿度:%d.%d%%rn",temp_buf[2],temp_buf[3],temp_buf[0],temp_buf[1]);  //测量失败
			printf("		|		|		|rn");
			TIM_Cmd(TIM4, DISABLE);
			PF_O(8)=0;
		}
		if(S>=1&S<30)
		{
			printf(" 距离过近	|		| 温度:%d.%d℃	| 湿度:%d.%d%%rn",temp_buf[2],temp_buf[3],temp_buf[0],temp_buf[1]);  //测量失败
			printf("		|		|		|rn");
			TIM_Cmd(TIM4, DISABLE);
			PF_O(8)=0;
		}
		if(S>=30&S<=4000)
		{
			printf("		| 距离:%dmm	| 温度:%d.%d℃	| 湿度:%d.%d%%rn",S,temp_buf[2],temp_buf[3],temp_buf[0],temp_buf[1]);
			printf("		|		|		|rn");
			init_TIM4_Warning(S);
		}
		if(S>4000)
		{
			printf(" 超出测量范围	|		| 温度:%d.%d℃	| 湿度:%d.%d%%rn",temp_buf[2],temp_buf[3],temp_buf[0],temp_buf[1]);
			printf("		|		|		|rn");
			TIM_Cmd(TIM4, DISABLE);
			PF_O(8)=0;
		}
	}
	else
	{
		if(S==0)
		{
			printf(" 距离测量失败	|		|		| 温湿度获取错误代码:%d	rn",jugg_temp);  //测量失败
			printf("		|		|		|rn");
			TIM_Cmd(TIM4, DISABLE);
			PF_O(8)=0;
		}
		if(S>=1&S<30)
		{
			printf(" 距离过近	|		|		| 温湿度获取错误代码:%d	rn",jugg_temp);  //测量失败
			printf("		|		|		|rn");
			TIM_Cmd(TIM4, DISABLE);
			PF_O(8)=0;
		}
		if(S>=30&S<=4000)
		{
			printf("		| 距离:%dmm	|		| 温湿度获取错误代码:%d	rn",S,jugg_temp);
			printf("		|		|		|rn");
			init_TIM4_Warning(S);
		}
		if(S>4000)
		{
			printf(" 超出测量范围	|		|		| 温湿度获取错误代码:%d	rn",jugg_temp);
			TIM_Cmd(TIM4, DISABLE);
			printf("		|		|		|rn");
			PF_O(8)=0;
		}
	}
	times=0;
	S=0;
}
//光敏电阻ADC转换及计算部分函数
void lux_ADC(void)
{
	uint8_t ADC_min=0,ADC_max=0;//记录光敏电阻产生的数据中的最大最小值
	uint8_t ADC_sj=0;			//读取到的光敏电阻ADC数据
	uint8_t ADC_PWM=0;			//PWM占空比
	init_ADC();					//初始化ADC
	init_KEEY();
	init_TIM14_ADC(); 			//初始化PWM
	init_TIM1_ADC();
	ADC_min = ADC_max = get_ADC(5);//最大最小值读取初始数据
	while(1)
	{
		ADC_sj = get_ADC(5);//采集数据
		/****** 进行归一化 ******/
		if(ADC_sj < ADC_min)	ADC_min = ADC_sj;
		if(ADC_sj > ADC_max)	ADC_max = ADC_sj;
		/****** 归一化结束 ******/
		ADC_PWM = (ADC_sj - ADC_min)*99/(ADC_max - ADC_min);//计算相对数据,范围:0~99
		TIM_SetCompare1(TIM14,ADC_PWM);//输入得到的数据,改变PWM占空比
		TIM_SetCompare3(TIM1,ADC_PWM);//输入得到的数据,改变PWM占空比
		TIM_SetCompare4(TIM1,ADC_PWM);//输入得到的数据,改变PWM占空比
		if(PA_I(0)==0)
		{
			TIM_Cmd(TIM2, DISABLE);
			TIM_Cmd(TIM3, DISABLE);
			TIM_Cmd(TIM4, DISABLE);
			TIM_Cmd(TIM1, DISABLE);
			TIM_ARRPreloadConfig(TIM14,DISABLE);
			TIM_ARRPreloadConfig(TIM1,DISABLE);
			TIM_Cmd(TIM14, DISABLE);
			TIM_Cmd(TIM13, DISABLE);
			USART_Cmd(USART1, DISABLE);
			close_EXTI4();
			close_EXTI0();
			init_GPIO_EF_OUT();
			init_BEEP();
			PF_BUS_O(0xFFFF);
			PE_BUS_O(0xFFFF);
			PF_O(8)=0;
			init_KEEY();
			break;
		}
	}
}
//主函数
int main(void)
{	
	mainloop();
	init_USART1(115200);
	init_TEMP();
//	init_KEEY();
//	init_BEEP();
	PF_O(8)=0;
	init_TX();
	PB_O(8)=0;
	init_RX();
	init_GPIO_EF_OUT();
	PF_BUS_O(0x0000);
	PE_BUS_O(0x0000);
	delay_ms(500);
	PF_BUS_O(0xFFFF);
	PE_BUS_O(0xFFFF);
	PF_O(8)=0;
//	init_TIM14_PF9();
//	init_TIM1_PE13();
//	init_TIM1_PE14();
	TIM_SetCompare1(TIM14,100);  //设置比较值
	TIM_SetCompare3(TIM1,100);
	TIM_SetCompare4(TIM1,100);
	printf(" by:Mike Zhou	| 网易独家音乐人	| 嵌入式软件工程师	| https://music.163.com/#/artist?id=12115205n");
	printf("		|		|		| https://blog.csdn.net/weixin_53403301rn");
	init_EXTI0();
	init_EXTI4();
	init_TIM3_RX();  //默认关闭
	init_TIM2_TX();
	while(1)
	{
		while(!PB_I(9));
		TIM_Cmd(TIM3, ENABLE);
		while(PB_I(9));
		TIM_Cmd(TIM3, DISABLE);
		Count();
		jugg_temp = read_TEMP(temp_buf);
		if (PE_I(2)==0)
		{
			TIM_Cmd(TIM2, DISABLE);
			TIM_Cmd(TIM3, DISABLE);
			TIM_Cmd(TIM4, DISABLE);
			TIM_Cmd(TIM1, DISABLE);
			TIM_CtrlPWMOutputs(TIM14,DISABLE);		//使能PWM输出控制
			TIM_Cmd(TIM14, DISABLE);
			TIM_Cmd(TIM13, DISABLE);
			USART_Cmd(USART1, DISABLE);
			close_EXTI4();
			close_EXTI0();
			init_GPIO_EF_OUT();
			init_BEEP();
			PF_BUS_O(0xFFFF);
			PE_BUS_O(0xFFFF);
			PF_O(8)=0;
			init_KEEY();
			break;
		}
		if (PE_I(3)==0)
		{
			TIM_Cmd(TIM2, DISABLE);
			TIM_Cmd(TIM3, DISABLE);
			TIM_Cmd(TIM4, DISABLE);
			TIM_Cmd(TIM1, DISABLE);
			TIM_CtrlPWMOutputs(TIM14,DISABLE);		//使能PWM输出控制
			TIM_Cmd(TIM14, DISABLE);
			TIM_Cmd(TIM13, DISABLE);
			USART_Cmd(USART1, DISABLE);
			close_EXTI4();
			close_EXTI0();
			init_GPIO_EF_OUT();
			init_BEEP();
			PF_BUS_O(0xFFFF);
			PE_BUS_O(0xFFFF);
			PF_O(8)=0;
			init_KEEY();
			return 0;
		}
	}
	lux_ADC();
}
//中断0
void EXTI0_IRQHandler(void)
{
	if(EXTI_GetFlagStatus(EXTI_Line0) == SET) //中断产生
	{
		init_BEEP();
	}
	//结束后清空标志位
	EXTI_ClearITPendingBit(EXTI_Line0);
}
//中断4
void EXTI4_IRQHandler(void)
{
	if(EXTI_GetFlagStatus(EXTI_Line4) == SET) //中断产生
	{
		close_BEEP();
	}
	//结束后清空标志位
	EXTI_ClearITPendingBit(EXTI_Line4);
}
//测距报警的定时器2服务函数
void TIM4_IRQHandler(void)
{
	if(TIM_GetITStatus(TIM4,TIM_IT_Update) == SET)
	{
		PF_O(8)=!PF_O(8);
		PF_O(10)=!PF_O(10);
	}
	TIM_ClearITPendingBit(TIM4,TIM_IT_Update);
}
//测距技术定时器3服务函数
void TIM3_IRQHandler(void)
{
	if(TIM_GetITStatus(TIM3,TIM_IT_Update) == SET)
	{
		times++;
	}
	TIM_ClearITPendingBit(TIM3,TIM_IT_Update);
}
//定时器2服务函数 提供TX输入
void TIM2_IRQHandler(void)   //每500ms启动一次模块
{
	if(TIM_GetITStatus(TIM2,TIM_IT_Update) == SET)
	{
		PB_O(8)=1;
		delay_us(20);
		PB_O(8)=0;
	}
	TIM_ClearITPendingBit(TIM2,TIM_IT_Update);
}
//串口1中断服务函数
void USART1_IRQHandler(void) 
{
	if(USART_GetITStatus(USART1,USART_IT_RXNE)==SET)
	{	
		char data = USART_ReceiveData(USART1);
		USART_SendData(USART1,data);
		while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);
		USART_ClearITPendingBit(USART1,USART_IT_RXNE);//清空标志位
		if(data=='Q')
		{
			close_BEEP();
		}
		if(data=='S')
		{
			init_BEEP();
		}
		if(data=='L')
		{
			init_TIM14_PF9();
			init_TIM1_PE13();
			init_TIM1_PE14();
		}
		if(data=='D')
		{
			TIM_Cmd(TIM1, DISABLE);
			TIM_Cmd(TIM14, DISABLE);
			init_GPIO_EF_OUT();
			PF_O(9)=1;
			PE_O(13)=1;
			PE_O(14)=1;
		}
		if(data=='E')
		{
			TIM_Cmd(TIM1, DISABLE);
			TIM_Cmd(TIM14, DISABLE);
			init_GPIO_EF_OUT();
			PF_O(9)=1;
			PE_O(13)=1;
			PE_O(14)=1;
			for(int i=0;i<2;i++)
			{
				PF_O(9)=0;delay_ms(100);
				PF_O(9)=1;delay_ms(100);
				PE_O(13)=0;delay_ms(100);
				PE_O(13)=1;delay_ms(100);
				PE_O(14)=0;delay_ms(100);
				PE_O(14)=1;delay_ms(100);
				PF_O(9)=0;delay_ms(100);
				PE_O(13)=0;delay_ms(100);
				PE_O(14)=0;delay_ms(100);
				PE_O(14)=0;delay_ms(100);
				PE_O(13)=0;delay_ms(100);
				PF_O(9)=0;delay_ms(100);
				PF_O(9)=1;delay_ms(100);
				PE_O(13)=1;delay_ms(100);
				PE_O(14)=1;delay_ms(100);
			}
		}
	}
}

以下是导入的函数及库

# include "stm32f4xx.h"

void delay_ms(unsigned int ms)
{
	while(ms--)
	{
		SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
		SysTick->LOAD = 168000000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
		SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
		SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能168MHz的系统定时器
		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
	}
	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{
	while(us--)
	{
		SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
		SysTick->LOAD = 168000000/1000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
		SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
		SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能168MHz的系统定时器
		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
	}
	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

#ifndef __DELAY_H__
#define __DELAY_H__

void delay_ms(unsigned int ms);
void delay_us(unsigned int us);

#endif

#ifndef __GPIO_H__
#define __GPIO_H__

#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum)) 

#define GPIOA_ODR_Addr    (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr    (GPIOB_BASE+20) //0x40020414 
#define GPIOC_ODR_Addr    (GPIOC_BASE+20) //0x40020814 
#define GPIOD_ODR_Addr    (GPIOD_BASE+20) //0x40020C14 
#define GPIOE_ODR_Addr    (GPIOE_BASE+20) //0x40021014 
#define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414    
#define GPIOG_ODR_Addr    (GPIOG_BASE+20) //0x40021814   
#define GPIOH_ODR_Addr    (GPIOH_BASE+20) //0x40021C14    
#define GPIOI_ODR_Addr    (GPIOI_BASE+20) //0x40022014     

#define GPIOA_IDR_Addr    (GPIOA_BASE+16) //0x40020010 
#define GPIOB_IDR_Addr    (GPIOB_BASE+16) //0x40020410 
#define GPIOC_IDR_Addr    (GPIOC_BASE+16) //0x40020810 
#define GPIOD_IDR_Addr    (GPIOD_BASE+16) //0x40020C10 
#define GPIOE_IDR_Addr    (GPIOE_BASE+16) //0x40021010 
#define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 
#define GPIOG_IDR_Addr    (GPIOG_BASE+16) //0x40021810 
#define GPIOH_IDR_Addr    (GPIOH_BASE+16) //0x40021C10 
#define GPIOI_IDR_Addr    (GPIOI_BASE+16) //0x40022010 
 
#define PA_O(n)   	BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PA_I(n)    	BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 

#define PB_O(n)   	BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PB_I(n)    	BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 

#define PC_O(n)   	BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PC_I(n)    	BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 

#define PD_O(n)   	BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PD_I(n)    	BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 

#define PE_O(n)   	BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
#define PE_I(n)    	BIT_ADDR(GPIOE_IDR_Addr,n)  //输入

#define PF_O(n)   	BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PF_I(n)    	BIT_ADDR(GPIOF_IDR_Addr,n)  //输入

#define PG_O(n)   	BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
#define PG_I(n)    	BIT_ADDR(GPIOG_IDR_Addr,n)  //输入

#define PH_O(n)   	BIT_ADDR(GPIOH_ODR_Addr,n)  //输出 
#define PH_I(n)    	BIT_ADDR(GPIOH_IDR_Addr,n)  //输入

#define PI_O(n)  	 	BIT_ADDR(GPIOI_ODR_Addr,n)  //输出 
#define PI_I(n)   	BIT_ADDR(GPIOI_IDR_Addr,n)  //输入

#endif

# include "stm32f4xx.h"
# include "GPIO.h"

void PA_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PA_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PA_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PA_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PB_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PB_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PB_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PB_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PC_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PC_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PC_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PC_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PD_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PD_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PD_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PD_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PE_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PE_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PE_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PE_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PF_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PF_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PF_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PF_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PG_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PG_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PG_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PG_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PH_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PH_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PH_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PH_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PI_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PI_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PI_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PI_I(i)<<i)&0xFFFF;
	}
	return num;
}

#ifndef __GPIO_BUS_H__
#define __GPIO_BUS_H__

void PA_BUS_O(unsigned int num);
unsigned int PA_BUS_I(void);

void PB_BUS_O(unsigned int num);
unsigned int PB_BUS_I(void);

void PC_BUS_O(unsigned int num);
unsigned int PC_BUS_I(void);

void PD_BUS_O(unsigned int num);
unsigned int PD_BUS_I(void);

void PE_BUS_O(unsigned int num);
unsigned int PE_BUS_I(void);

void PF_BUS_O(unsigned int num);
unsigned int PF_BUS_I(void);

void PG_BUS_O(unsigned int num);
unsigned int PG_BUS_I(void);

void PH_BUS_O(unsigned int num);
unsigned int PH_BUS_I(void);

void PI_BUS_O(unsigned int num);
unsigned int PI_BUS_I(void);

#endif

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇

)">
下一篇>>