如何正确使用TPS54331DDAR降压芯片,芯片的每个引脚是干什么的?一位电子大学生的日常分享(莱洛三角形的降压部分DCDC)

最近看到不少莱洛三角形的资料,决定开始着手做一个出来,因此开设一个新的专栏--莱洛三角形。先从稳压部分开始讲起。DCDC降压芯片大同小异,原理都差不多,这次我使用的是TPS54331系列的芯片。

一.特性

1.3.5 ~ 28v输入电压范围

2.可调输出电压低至0.8 V

3.MOSFET支持3-A连续输出

4.固定570 kHz开关频率

5.典型的1- A关机静态电流

6.可调节慢启动限制涌流电流可编程的UVLO阈值

7.过电压暂态保护

二:图一为引脚配置及功能,图二为经典电路

图一:

图二:

                                                 

 

BOOT:在BOOT和PH引脚之间需要0.1uF引导电容。如果这个电容器上的电压低于最低要求,高侧moset被强制切换直到电容刷新

SS:慢启动设置端口,建议在外部对慢启动时间进行编程,因为慢启动时间不会在内部实现。TPS54331器件有效地使用内部电压基准或SS引脚电压的较低电压作为输入到误差放大器的电源参考电压,并相应地调节输出。SS引脚对地的电容(Css)实现了慢启动时间。TPS54331器件有一个2 μA的内部上拉电流源,为外部慢启动电容充电。使用公式3计算慢启动时间(10%至90%)。慢启动时间应该设置在1 ms到10 ms之间,以确保良好的启动行为。慢启动电容不超过27nf。我们这里使用的是10nf。

COMP:这个引脚是误差放大器的输出和PWM比较器的输入。将频率补偿元件连接到这个引脚。

这里的电容值C6,C7和电阻值的确定方法如下(注:这里的参数都是已经算好的,不要去改变它的电容和电阻值的大小,否则会导致最终输出电压不稳定):

 

VIN:输入电压,这里不做过多解释。

VOUT:输出电压计算方法,这里的Vref是参考电压

                                                    

 

EN:使能端,必须使得该引脚电压高于1.25V,芯片才能正常工作。否则不工作,所以这里的电阻换成其他的大小满足上述条件,同样可以使用。

电流输出补偿设计:(输出端电容和电感大小的选择)

 上述是该芯片每个引脚如何使用的方法,数据手册放在下面了。

《数据手册链接》

码字不易,喜欢的朋友点个赞吧(爆肝的动力),转载请注明出处,欢迎评论区交流指正!!!

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
THE END
分享
二维码
< <上一篇

)">
下一篇>>